Scattering of Dirac particles by mabnetic fields and spectral theory

磁场和谱理论对狄拉克粒子的散射

基本信息

  • 批准号:
    15540206
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The subject of this research project is the spectral theory for Dirac operators with magnetic fields in two dimensions, and the special emphasis is placed on the study about the relation between scattering of Dirac particles by magnetic fields and resonance at zero energy of Schrodinger operators. The motion of massless Dirac particles is governed by the operator D(A,V)=σ・ (-i∇-A)+V acting on [L^2(R^2)]^2, where A(x):R^2→R^2 is a magnetic potential, V(x):R^2→R is a electronic potential and σ=(σ_1,σ_2) is a vector with 2 × 2 Pauli matrices as components. The square of Dirac Operator D(A,0) without scalar potential V becomes the diagonal operator with Schrodinger operators H_±=(-i∇-A)^2±b as diagonal components (Pauli operator), where b=∇×A:R^2→R denotes the magnetic field associated with vector potential A. The both operators H_± 【greater than or equal】 0 are nonnegative, but they have a different spectral structure at zero energy. If, for example, b∈C^∞_0(R^2) is compactly supported an … More d it has the noninteger flux α defined by α=∫b(x)dx/2π 【not a member of】 Z, then equation H_u=0 has a bounded solution (resonance) not in L^2, while H_+u=0 does not have such a solution. Thus the zero energy resonance of Schrodinger operators appears in the spectral theory for Dirac operators in a quite natural way. The present project deals with the following two subjects closely related to zero energy resonance : (1)resolvent convergence in norm to Dirac operators with solenoidal magnetic fields (point-like fields) : (2)scattreing by electromagnetic fields with small support. These subjects have both been discussed in physical articles when electromagnetic fields are spherically symmetric, and the results obtained are based on a calculation using the Bessel functions. The main achievement is that we have made clear the role of zero energy resonance hidden behind the explicit calculation from a mathematical point of view by eliminating the assumption of spherical symmetry. The scattering of Dirac particles by electromegnetic fields with small support appears in the model of cosmic string as an important problem of mathematical physics. The application to it has been also studied. Less
本研究课题的研究内容是二维磁场中Dirac算子的谱理论,重点研究Dirac粒子与磁场的散射与Schrodinger算子的零能共振之间的关系。无质量狄拉克粒子的运动由作用于[L^2(R^2)]^2的算符D(A,V)=σ·(-i <$-A)+V控制,其中A(x):R^2→R^2是磁势,V(x):R^2→R是电子势,σ=(σ_1,σ_2)是以2 × 2泡利矩阵为分量的向量。没有标势V的狄拉克算子D(A,0)的平方成为以薛定谔算子H ±=(-i <$-A)^2±B为对角分量的对角算子(泡利算子),其中B=<$x ×A:R^2→R表示与矢势A有关的磁场。这两个算子H ± 0都是非负的,但它们在零能量处具有不同的谱结构。例如,如果B∈C^∞_0(R^2)是紧支撑的, ...更多信息 d它有非整数通量α,定义为α= α B(x)dx/2π [不是] Z的成员,则方程H_u=0有不在L^2中的有界解(共振),而H_+u=0没有这样的解.这样,Schrodinger算子的零能共振就以一种十分自然的方式出现在Dirac算子的谱理论中。本文研究了与零能共振密切相关的两个问题:(1)具有螺线管磁场(点状场)的Dirac算子的预解式依范数收敛问题;(2)小支撑电磁场的散射问题。当电磁场是球对称时,这些问题都在物理学文章中讨论过,得到的结果是基于使用贝塞尔函数的计算。主要成果是通过消除球对称假设,从数学角度明确了隐藏在显式计算背后的零能共振的作用。狄拉克粒子与小支撑电磁场的散射是宇宙弦模型中的一个重要数学物理问题。并对其应用进行了研究。少

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scattering of Dirac paerticles by electromagnetic fields with small support in two dimensions and effect from scalar potentials
二维小支撑电磁场对狄拉克粒子的散射以及标量势的影响
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuhiro Kurata;M.Shibata;K.Tada;Tetsuro Miyakawa;田村 英男
  • 通讯作者:
    田村 英男
A note on the relativistic limit of Dirac operators and spectral concentration
关于狄拉克算子的相对论极限和谱浓度的注记
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊藤 宏;山田 修宣
  • 通讯作者:
    山田 修宣
田村 英男: "Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field"J.Math.Phys.. 44. 2967-2993 (2003)
Hideo Tamura:“狄拉克算子与 Aharonov-Bohm 场范数的求解收敛” J.Math.Phys.. 44. 2967-2993 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Exponential product approximation to heat kernel of Dirichlet Laplacian and Zeno product
狄利克雷拉普拉斯和芝诺积热核的指数积近似
田村 英男: "Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect from scalar potentials"Ann.Henri Poincare. 5(発表予定). (2004)
Hideo Tamura:“二维小支撑下的狄拉克粒子的散射和标量势的影响”Ann.Henri Poincare 5(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAMURA Hideo其他文献

TAMURA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAMURA Hideo', 18)}}的其他基金

Spectral asymptotic analysis for Schrodinger operators
薛定谔算子的谱渐近分析
  • 批准号:
    21340037
  • 财政年份:
    2009
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic Analysis in Spectral and Scattering Theory
光谱和散射理论中的渐近分析
  • 批准号:
    18340049
  • 财政年份:
    2006
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scattering by magnetic fields and Aharonov-Bohm effect
磁场和阿哈罗诺夫-玻姆效应的散射
  • 批准号:
    13640176
  • 财政年份:
    2001
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral Theory for Schrodinger Operators with Magnetic Fields and its Application
磁场薛定谔算子的谱理论及其应用
  • 批准号:
    11440056
  • 财政年份:
    1999
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Spectral and Scattering Theory and its Application
光谱与散射理论及其应用
  • 批准号:
    09640151
  • 财政年份:
    1997
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

On the Spectrum of the Dirac Operator on Compact Riemannian Spin Manifolds
紧致黎曼自旋流形上狄拉克算子的谱
  • 批准号:
    552835-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Spectral analysis of the Dirac operator on symmetric spaces
对称空间上狄拉克算子的谱分析
  • 批准号:
    17K14208
  • 财政年份:
    2017
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Deepening and application to integrable systems of index theory via perturbation of Dirac operator
基于狄拉克算子摄动的指标论可积系统的深化及应用
  • 批准号:
    26800045
  • 财政年份:
    2014
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric Applications of Dirac Operator and Atiyah-Singer Index Theory
狄拉克算子和Atiyah-Singer指数理论的几何应用
  • 批准号:
    1007041
  • 财政年份:
    2010
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Localization of Riemann-Roch number via perturbation of Dirac operator and its applications
基于狄拉克算子摄动的黎曼-罗赫数定位及其应用
  • 批准号:
    21840045
  • 财政年份:
    2009
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Small eigenvalues of the Dirac operator, Surgeries and Bordism Theory
狄拉克算子的小特征值、外科手术和 Bordism 理论
  • 批准号:
    75179442
  • 财政年份:
    2008
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Research Grants
Dirac operator, Atiyah-Singer index theory, and applications
狄拉克算子、Atiyah-Singer 指数理论及应用
  • 批准号:
    0707000
  • 财政年份:
    2007
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Dirac Operator, Eta Invariant and Applications
狄拉克算子、Eta 不变量及其应用
  • 批准号:
    0405890
  • 财政年份:
    2004
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
New Unifying Structures in Lie Theory and the Cubic Dirac Operator
李理论和三次狄拉克算子的新统一结构
  • 批准号:
    0209473
  • 财政年份:
    2002
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: the Vanishing Theorems and Index Theorems of the Dirac Operator on Singular Spaces
数学科学:奇异空间上狄拉克算子的消失定理和指数定理
  • 批准号:
    8301627
  • 财政年份:
    1983
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了