Application of a Spectral Finite Difference Scheme to a Complex Configuration

谱有限差分格式在复杂配置中的应用

基本信息

  • 批准号:
    09640247
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

In the current spectral finite difference scheme, dependent variables are assumed to be expressed in a complete spectral expansion ( in one spatial component ) such as Fourier expansion and Dini expansion, which leads to a system of simultaneous partial differential equations in space normal to the direction(s) of expansion and in time. As a result, no error is introduced in decomposing the original partial differential equations in spatial components, so that the scheme possesses better resolution in space and high computation speed in nature at least for natural convection / forced convection / non-Newtonian fluid flow in a simply-connected region or over a doubly-connected region expressed in terms of a simple analytic function. Under the current project, proposed is introduction of a functional which maps the boundary to a circle in case of a simply-connected region. For several complex configurations, e.g. a semi-infinite rectangular cavity, a Cassini cavity, and a non-circular deformed cavity, a concrete mapping analytic function is determined and found to get to a steady-state solution under laminar natural convection for various combinations of parameters such as a Grashof number, a Prandtl number, and an elatic number (for a viscoelastic fluid).
在目前的谱有限差分格式中,假设因变量表示为完全谱展开(在一个空间分量中),如傅立叶展开和狄尼展开,这导致在空间上垂直于(S)展开方向和在时间上的联立偏微分方程组。结果表明,该格式对原偏微分方程组在空间分量上的分解没有引入误差,至少对简单解析函数表示的单连通区或双连通区的自然对流/强迫对流/非牛顿流体流动具有较高的空间分辨率和计算速度。在目前的项目中,建议引入一个泛函,该泛函在单连通区域的情况下将边界映射到圆。对于半无限矩形空腔、卡西尼空腔和非圆形变形空腔等几种复杂构型,确定了一个具体的映射解析函数,得到了层流自然对流条件下Grashof数、Prandtl数和弹性数(对于粘弹性流体)的各种参数组合的稳态解。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshihiro MOCHIMARU: "A Spectral Finite Difference Scheme for a Complex Configuration" Proc. Fourth KSME-JSME Fluids Engineering Conference. 285-288 (1998)
Yoshihiro MOCHIMARU:“复杂配置的光谱有限差分方案”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro MOCHIMARU: "Spectral Finite Difference Analysis of Natural Convection" Proc. the Sixth Japan-Russia Joint Symposium on Computational Fluid Dynamics. 148-151 (1998)
Yoshihiro MOCHIMARU:“自然对流的光谱有限差分分析”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro MOCHIMARU: "Application of a Spectral Finite Difference Scheme to a Camplex Con-figuration" Proc.Eighth International Colloquim on Differential Equa-tions. 311-318 (1997)
Yoshihiro MOCHIMARU:“谱有限差分格式在复杂配置中的应用”Proc.第八届微分方程国际研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro MOCHIMARU: "Application of a Spectral Finite Difference Scheme to Heat & Fluid Flow Problems" Proc.Computational Methods and Simulation in Engineer-ing. II.I-1-II.I-7 (1997)
Yoshihiro MOCHIMARU:“光谱有限差分格式在热学中的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro MOCHIMARU: "Spectral Finite Difference Analysis of Natural Convection from Rows of Vertical Fins" Proc. Advances in Computational Heat Transfer. 411-417 (1997)
Yoshihiro MOCHIMARU:“垂直翅片排自然对流的光谱有限差分分析”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MOCHIMARU Yoshihiro其他文献

MOCHIMARU Yoshihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MOCHIMARU Yoshihiro', 18)}}的其他基金

Analysis of Heat and Fluid Flow Problems in a Multiply-Connected Region, using a Conformal Mapping
使用共形映射分析多重连接区域中的热流和流体流动问题
  • 批准号:
    20540108
  • 财政年份:
    2008
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Spectral Analysis in a Multiply-Connected Region
多重连通区域中的非线性谱分析
  • 批准号:
    17540104
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalization of a Spectral Finite Difference Scheme
谱有限差分格式的推广
  • 批准号:
    11640102
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of Industrial Development on Global Environment
工业发展对全球环境的影响
  • 批准号:
    11691146
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simulation of Heat and Fluid Flow of a Highly Viscoelastic Fluid, Using a Spectral Method
使用谱法模拟高粘弹性流体的热量和流体流动
  • 批准号:
    04650145
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Estimation of strong ground motion using accurate and efficient mesh-free finite-difference method
使用准确高效的无网格有限差分法估计强地面运动
  • 批准号:
    17K06531
  • 财政年份:
    2017
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aeroelastic Tailoring of Low Speed Aircraft through an Implicit Finite Difference Method
通过隐式有限差分法对低速飞机进行气动弹性剪裁
  • 批准号:
    511105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of a full-waveform inversion method utilizing a mesh-free finite-difference method
利用无网格有限差分法开发全波形反演方法
  • 批准号:
    15K18301
  • 财政年份:
    2015
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of tsunami model integrating the Finite Difference Method and the Finite Vomule Method
结合有限差分法和有限体积法的海啸模型开发
  • 批准号:
    26820206
  • 财政年份:
    2014
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric structure-preserving finite difference method for vector-valued evolution equation
向量值演化方程的几何保结构有限差分法
  • 批准号:
    24654026
  • 财政年份:
    2012
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of Flood Flows Simulation Model Based on High Resolution Upwinding Finite Difference Method
基于高分辨率逆风有限差分法的洪水模拟模型构建
  • 批准号:
    11450190
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Analysis of Compressible and Incompressible Turbulence Using High Order Finite Difference Method
高阶有限差分法对可压缩和不可压缩湍流的数值分析
  • 批准号:
    07650204
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite Difference Method and Finite Element Method on Manifolds, and Their Applications
流形上的有限差分法和有限元法及其应用
  • 批准号:
    60540110
  • 财政年份:
    1985
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Application of the Finite Difference Method in Seismology to Crust and Upper Mantle Studies
地震学有限差分法在地壳和上地幔研究中的应用
  • 批准号:
    6931899
  • 财政年份:
    1969
  • 资助金额:
    $ 1.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了