Simulation of Heat and Fluid Flow of a Highly Viscoelastic Fluid, Using a Spectral Method
使用谱法模拟高粘弹性流体的热量和流体流动
基本信息
- 批准号:04650145
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Steady-state laminar non-Newtonian fluid flows past an elliptic cylinder or past an ellipsoid of revolution and natural convectin f non-Newtonian fluid filled in the half of an elliptic cylinder are analyzed numericaly to clarify the highly viscoelastic behavior of plymer solutions. A second order fluid model is adopted as a constitutive equation ; in a two-dimensonal flow case the equations of motion lead to a similar, but slightly modified, equation to the vorticity transport equation for an incompressible Newtonian fluid, whereas in a three-dimensional case the situation is different from the two-dimensional case, being supplemented with the stress components. The system f equations in an unsteady form can be split into Fourier components, using Fourier components of a stream function and vorticity in a boundary-fitted conformal coordinate sstem. Then each component is discretized in a finite difference method for doubly-exponential grid spacing in time and space ; the resulting equations can be integrated with respect to time to get a steady-state solution. As a rsult, a large increase of a drag force and a large variation of streamlines due to fluid viscoelastcity is found at moderae Reynolds numbers of Grashf numbers for a variety of shapes.
对非牛顿流体绕椭圆柱和旋转椭球的稳态层流流动以及非牛顿流体在半个椭圆柱内的自然对流进行了数值分析,阐明了非牛顿流体解的高粘弹性行为。采用二阶流体模型作为本构方程;在二维流动情况下,运动方程导致不可压缩牛顿流体的涡量输运方程类似,但略有修改,而在三维情况下,情况不同于二维情况,补充了应力分量。在贴体保形坐标系中,利用流函数和涡量的傅立叶分量,非定常形式的方程组可以分解为傅立叶分量。然后,每个组件在时间和空间上的双指数网格间距的有限差分方法中离散化;所得到的方程可以相对于时间积分以得到稳态解。结果表明,对于各种形状的流体,在中等雷诺数和Grashf数下,由于流体的粘弹性,阻力大幅度增加,流线变化大。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshihiro MOCHIMARU: "Numerical Simulation a Viscoelastic Fluid Flow past an Elliptic Cylinder" Theoretical and Applied Rheology/Proc.XIth Int.Congr.on Rheology. 306- (1992)
Yoshihiro MOCHIMARU:“粘弹性流体流经椭圆柱的数值模拟”理论与应用流变学/Proc.XIth Int.Congr.on Rheology。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro MOCHIMARU: "Numerial Simulation of a Viscoelasti Fluid Flow past an Elliptic Cylinder" Theoretcal and Applied Rheology / Proc.Xth Int/. Congr.on Rheology. Vol.1. 306 (1992)
Yoshihiro MOCHIMARU:“粘弹性流体流过椭圆柱的数值模拟”理论与应用流变学/Proc.Xth Int/。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro MOCHIMARU: "Numerical Simulation of a Steady Non-Newtnian Fluid Flow past a Body of Revolution at Moderate Reynolds Numbers, Using a Spectral Method" Proc. 5th Int.Sym.Computational Fluid Dynamis. Vol.2. 273-278 (1993)
Yoshihiro MOCHIMARU:“使用光谱方法对经过中等雷诺数旋转体的稳定非牛顿流体进行数值模拟”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro MOCHIMARU: "Numerical Simulation of a Viscoelastic Fluid Flow past an Elliptic Cylinder" Theoretical and Applied Rheology/Proc.Xth Int.Congr.on Rheology. 1. 306 (1992)
Yoshihiro MOCHIMARU:“粘弹性流体流过椭圆柱的数值模拟”理论与应用流变学/Proc.Xth Int.Congr.on Rheology。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro MOCHIMARU: "Numerical Simulation of a Steady Non-Newtonian Fluid Flow past a Body of Revolution at Moderate Reynolds Numbers,Using a Spectral Method" Proc.5th Int.Sym.Computational Fluid Dynamics. 2. 273-278 (1993)
Yoshihiro MOCHIMARU:“使用谱法对以中等雷诺数流过旋转体的稳定非牛顿流体进行数值模拟”Proc.5th Int.Sym.Computational Fluid Dynamics。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOCHIMARU Yoshihiro其他文献
MOCHIMARU Yoshihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOCHIMARU Yoshihiro', 18)}}的其他基金
Analysis of Heat and Fluid Flow Problems in a Multiply-Connected Region, using a Conformal Mapping
使用共形映射分析多重连接区域中的热流和流体流动问题
- 批准号:
20540108 - 财政年份:2008
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Spectral Analysis in a Multiply-Connected Region
多重连通区域中的非线性谱分析
- 批准号:
17540104 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalization of a Spectral Finite Difference Scheme
谱有限差分格式的推广
- 批准号:
11640102 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of Industrial Development on Global Environment
工业发展对全球环境的影响
- 批准号:
11691146 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of a Spectral Finite Difference Scheme to a Complex Configuration
谱有限差分格式在复杂配置中的应用
- 批准号:
09640247 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Quantification of Flutter Simulations by the Fast Time-Spectral Method
快速时谱方法对颤振仿真的不确定性量化
- 批准号:
19K04835 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
- 批准号:
1645445 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
- 批准号:
1522577 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Gaussian-Localized Polynomial Approximation: A Well-Conditioned Spectral Method for Solving Partial Differential Equations in Complicated Domains
高斯局部多项式逼近:求解复杂域中偏微分方程的良好条件谱方法
- 批准号:
1521158 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant