Study on Integrable Cellular Automaton and Algebraic Structure of Its Solution Space by Ultradiscretization Method
超离散方法研究可积元胞自动机及其解空间代数结构
基本信息
- 批准号:09640273
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1997)1. Starting from integrable cellular automata we presented a novel form of Painleve equations. These equations are discrete in both the independent variable and the dependent one. We showed that they capture the essence of the behavior of the Painleve equations, organize themselves into a coalescence cascade and possess special solutions. A necessary condition for the integrability of cellular automata was also presented. We discussed about the notion of integrability of the cellular automata.2. We presented a cellular automaton equivalent for the two-dimensional Lotka-Volterra system. The dynamics was studied for integer and rational values of the parameters. In the case of integer parameters the motion is perfectly regular leading to strictly periodic motion. This is still true in the case of rational parameters, but for rational initial conditions the period becomes progressively longer as the denominator of the initial data increases. The motion, in this case, progressively loses its regularity resulting in chaotic behavior in the limit of irrational data.(1998)1. We presented a systematic way to construct ultra-discrete versions of the Painleve equations starting from known discrete forms.2. We analysed two asymmetric discrete Painleve equations, namely d-PII and q-PIII.We showed that both equations are self-dual. This means that the same equation governs the evolution along the discrete independent variable and the transformations under the action of the Schlesinger transforms along the parameters of the discrete Painleve3. We constructed ultradiscrete limits deriving the elementary cellular automata (ECA) from diffusion equations and discussed the correspondence between ECA and differential equations.
(1997年)1.从可积元胞自动机出发,给出了Painleve方程的一种新形式.这些方程的自变量和因变量都是离散的。我们发现,他们捕捉的本质Painleve方程的行为,组织成一个聚结级联,并拥有特殊的解决方案。给出了元胞自动机可积的一个必要条件。讨论了元胞自动机的可积性概念.提出了二维Lotka-Volterra系统的元胞自动机等价模型。研究了参数取整数和有理数时系统的动力学行为。在整数参数的情况下,运动是完全规则的,导致严格的周期性运动。这在有理参数的情况下仍然成立,但对于有理初始条件,随着初始数据的分母增加,周期逐渐变长。在这种情况下,运动逐渐失去其规律性,导致在非理性数据的限制下的混沌行为。(1998年)从已知的离散形式出发,提出了一种系统的方法来构造Painleve方程的超离散形式.本文分析了两个非对称离散Painleve方程,即d-PII和q-PIII,证明了这两个方程都是自对偶的。这意味着相同的方程支配着沿着离散自变量的演化和在Schlesinger变换的作用下沿着沿着离散Painleve 3的参数的变换。构造了由扩散方程导出的初等元胞自动机的超离散极限,讨论了初等元胞自动机与微分方程的对应关系。
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.J.Ablowitz: "On Discretizations of the Vector Nonlinear Schrodinger Equation" Phys.Lett.A. (to appear.).
M.J.Ablowitz:“关于向量非线性薛定谔方程的离散化”Phys.Lett.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Schmieder: "One-parametar variations of the ideal boundary and compact continuations of a Riemann surface" Analysis. 18. 125-130 (1998)
G.Schmieder:“黎曼曲面的理想边界和紧延延的单参数变化”分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.Takahashi: "Constructing Solutions to the Ultradiscrete Painleve Equations" J.Phys.A 30. 7953-7966 (1997)
D.Takahashi:“构建超离散 Painleve 方程的解”J.Phys.A 30. 7953-7966 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Hirota: "From Integrability to Chaos in a Lotka-Volterra Cellular Automaton" Phys.Lett.A. 236. 39-44 (1997)
R.Hirota:“Lotka-Volterra 元胞自动机中从可积性到混沌” Phys.Lett.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Schmieder: "Realisierungen des Idealen Randes einer Riemannschen Fluche unter Konformen Abschliβungen" Arch.Math.68. 36-44 (1997)
G.Schmieder:“Realisierungen des Idealen Randes einer Riemannschen Fluche unter Konformen Abschliβungen”Arch.Math.68 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTA Yasuhiro其他文献
OHTA Yasuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTA Yasuhiro', 18)}}的其他基金
A Study on the Theoretical Foundation of Equity Valuation
股权估值的理论基础研究
- 批准号:
16K04001 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical Studies on Accounting Conservatism
会计稳健性分析研究
- 批准号:
24530572 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New moving mesh numerical scheme based on the theory of integrable systems and its applications
基于可积系统理论的新型动网格数值格式及其应用
- 批准号:
22656026 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Model Analyses on Corporate Governance and Disclosure
公司治理与信息披露的模型分析
- 批准号:
21530476 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of universal character and new soliton equations
普适性的扩展和新的孤子方程
- 批准号:
19340031 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Equity Valuation Based on Accounting Information Dynamics
基于会计信息动态的股权估值
- 批准号:
18730303 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Construction and Classification of Nonautonomous Nonlinear Integrable Systems Based on Symmetry of Bilinear Form
基于双线性形式对称性的非自治非线性可积系统的构造与分类研究
- 批准号:
13640118 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Simulating nucleation and short crack propagation using cellular automaton in gradient microstructures
使用元胞自动机模拟梯度微结构中的成核和短裂纹扩展
- 批准号:
RGPIN-2018-05291 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Simulating nucleation and short crack propagation using cellular automaton in gradient microstructures
使用元胞自动机模拟梯度微结构中的成核和短裂纹扩展
- 批准号:
RGPIN-2018-05291 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Quenching simulation including manufacturing variations by the low-dimensional cellular automaton method
通过低维元胞自动机方法进行淬火模拟,包括制造变化
- 批准号:
21K14061 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel hybrid discrete-continuum cellular automaton model to study tuberculosis disease progression and treatment
一种用于研究结核病进展和治疗的新型混合离散连续元细胞自动机模型
- 批准号:
MR/P014704/2 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Fellowship
Simulating nucleation and short crack propagation using cellular automaton in gradient microstructures
使用元胞自动机模拟梯度微结构中的成核和短裂纹扩展
- 批准号:
RGPIN-2018-05291 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Simulating nucleation and short crack propagation using cellular automaton in gradient microstructures
使用梯度微结构中的元胞自动机模拟成核和短裂纹扩展
- 批准号:
RGPIN-2018-05291 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Physical Simulation of Quantum-Dot Cellular Automaton Networks on a Quantum Annealing Processor.
量子退火处理器上的量子点元胞自动机网络的物理模拟。
- 批准号:
504900-2017 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Physical Simulation of Quantum-Dot Cellular Automaton Networks on a Quantum Annealing Processor.
量子退火处理器上的量子点元胞自动机网络的物理模拟。
- 批准号:
504900-2017 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Simulating nucleation and short crack propagation using cellular automaton in gradient microstructures
使用梯度微结构中的元胞自动机模拟成核和短裂纹扩展
- 批准号:
RGPIN-2018-05291 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Simulation of residual stress heterogeneities using cellular automaton
使用元胞自动机模拟残余应力不均匀性
- 批准号:
261676-2013 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual