Study on Construction and Classification of Nonautonomous Nonlinear Integrable Systems Based on Symmetry of Bilinear Form
基于双线性形式对称性的非自治非线性可积系统的构造与分类研究
基本信息
- 批准号:13640118
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. We found several new nonautonomous nonlinear integrable second order ordinary difference equations which have forward-backward asymmetry. By using suitable dependent variable transformations, those forward-backward asymmetric integrable mappings are transformed into a class of discrete Painleve equations. Moreover we generalized those systems to even-odd asymmetric forms.2. We revealed the deep relation between the Laurent series expansion around a singular point for continuous Painleve equations and the small parameter in singularity confinement for discrete Painleve equations. By using the common feature for those two small parameters, we formulated a method to find an infinitesimal symmetry and applied it for simple examples.3. It was shown that by applying some dependent variable transformations for linearizable mappings we can create nonautonomous nonlinear integrable second order ordinary difference equations which have positive algebraic entropy. This remarkable example give a new aspect for the discrete integrability criteria.4. We studies the degree growth of the iterates of the initial conditions for a class of third-order integrable mappings which result from the coupling of a discrete Painleve equation to an homographic mapping. We showed that the degree grows like n^3. In the special cases where the mapping satisfies the singularity confinement requirement we find a slower, quadratic growth. Finally we presented a method for the construction of integrable Nth-order mapping with degree growth n^N.
1.我们发现了几个新的具有前后不对称性的非自治非线性可积二阶常微分方程解。通过适当的因变量变换,将这些前向后向非对称可积映射转化为一类离散的Painleve方程。此外,我们将这些系统推广到奇偶不对称形式。揭示了连续Painleve方程在奇点附近的Laurent级数展开式与离散Painleve方程奇性约束中的小参数之间的深层联系。利用这两个小参数的共同特征,我们给出了一种求无穷小对称性的方法,并将其应用于简单的例子。证明了通过对可线性化映射进行一些依赖变量变换,我们可以得到具有正的代数熵的非自治的非线性可积二阶常差分方程组。这一显著的例子为离散可积判据提供了一个新的方面。研究了一类由离散Painleve方程与单应映射耦合而成的三阶可积映射的初始条件迭代的次数增长性。在满足奇点约束条件的特殊情况下,我们发现了一个较慢的二次增长。最后给出了n^N次增长的N阶可积映射的构造方法。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Ohta et al.: "An Affine Weyl Group Approach to the Eight-Parameter Discrete Painleve Equation"J. Phys. A. 34. 10523-10532 (2001)
Y.Ohta 等:“八参数离散 Painleve 方程的仿射 Weyl 群方法”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Kakei et al.: "A Differential-Difference System Related to Toroidal Lie Algebra"J. Phys. A. 34. 10585-10592 (2001)
S.Kakei 等人:“与环形李代数相关的微分差分系统”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kajiwara: "Determinant formulas for the Toda and discrete Toda equations"Funkcial. Ekvac.. 44. 291-307 (2001)
K.Kajiwara:“Toda 和离散 Toda 方程的行列式”Funkcial。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Ramani: "A Geometrical Description of the Discrete Painleve VI and V Equations"Conn. Math. Phys.. 217. 315-329 (2001)
A. Ramani:“离散 Painleve VI 和 V 方程的几何描述”Conn。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohta: "An Affine Weyl Group Approach to the Eight-Parameter Discrete Painleve Equation"J. Phys. A. 34. 10523-10532 (2001)
Y.Ohta:“八参数离散 Painleve 方程的仿射 Weyl 群方法”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTA Yasuhiro其他文献
OHTA Yasuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTA Yasuhiro', 18)}}的其他基金
A Study on the Theoretical Foundation of Equity Valuation
股权估值的理论基础研究
- 批准号:
16K04001 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical Studies on Accounting Conservatism
会计稳健性分析研究
- 批准号:
24530572 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New moving mesh numerical scheme based on the theory of integrable systems and its applications
基于可积系统理论的新型动网格数值格式及其应用
- 批准号:
22656026 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Model Analyses on Corporate Governance and Disclosure
公司治理与信息披露的模型分析
- 批准号:
21530476 - 财政年份:2009
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of universal character and new soliton equations
普适性的扩展和新的孤子方程
- 批准号:
19340031 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Equity Valuation Based on Accounting Information Dynamics
基于会计信息动态的股权估值
- 批准号:
18730303 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Integrable Cellular Automaton and Algebraic Structure of Its Solution Space by Ultradiscretization Method
超离散方法研究可积元胞自动机及其解空间代数结构
- 批准号:
09640273 - 财政年份:1997
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)