Development of an on-line fault diagnosis and operation system for an optimal rice-alphaamylase production process of temperature-sensitive mutant of Saccharomyces cerevisiae by autoassociative neural network
利用自联想神经网络开发酿酒酵母温度敏感突变体最佳水稻α淀粉酶生产过程的在线故障诊断和操作系统
基本信息
- 批准号:08455381
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A nonlinear multivariate analysis, artificial autoassociative neural network (AANN), was applied to bioprocess fault detection . In an optimal production process of a recombinant yeast with a temperature controllable expression system, faults in test cases of faulty temperature sensor and plasmid instability of recombinant cells could be detected by the AANN.Since the raw data of measured variables included high frequency noise, a wavelet filter bank (WFB) was applied noise elimination before training of the AANN.The filtering performance of the WFB was compared with those of some classical first order digital filters. The filtered signals at several resolution scales by the WFB were employed as the training data of the AANN.The computing time and summation of square of errors (SSE) in training were compared and appropriate degree of the noise filtering and the density of the training data of the AANN were discussed. High frequency noise in the data could be eliminated by the WFB before the fault diagnosis was performed. The diagnosis system could accurately and immediately detect the faults on-line in the test cases of a faulty temperature sensor and plasmid instability of the recombinant cells. The performance of the feature capturing by the AANN was compared with that by a linear multivariate analysis, principal component analysis (PCA). AJ index defined in this study, using inputs and outputs of the AANN was used for fault detection successfully. The same faults were not detected by linear principal component analysis (PCA). The output of the first unit of the trained AANN functioned effectively for the discrimination of the data in the abnormal cases from the data in the normal cases. By implementing corrective action after fault detection, the final production amount was increased to twice the amount it would have been without diagnosis.
将一种非线性多变量分析--人工自联想神经网络(AANN)应用于生物过程故障检测.在一个具有温度可控表达系统的重组酵母的优化生产过程中,AANN可以检测到故障温度传感器和重组细胞质粒不稳定性测试用例中的故障,由于测量变量的原始数据包含高频噪声,小波滤波器组(WFB)在训练神经网络前先进行消噪处理,并将WFB滤波器的滤波性能与经典的一阶数字滤波器进行了比较。将WFB滤波后的信号在不同分辨率下作为AANN的训练数据,比较了AANN训练的计算时间和误差平方和(SSE),讨论了AANN的噪声滤除程度和训练数据的密度。在进行故障诊断之前,WFB可以消除数据中的高频噪声。在温度传感器故障和重组细胞质粒不稳定的测试用例中,该诊断系统能够准确、及时地在线检测出故障。通过与线性多变量分析、主成分分析(PCA)的比较,分析了AANN的特征提取性能。本文定义的AJ指标,利用AANN的输入和输出,成功地用于故障检测。线性主成分分析(PCA)没有检测到相同的故障。训练后的AANN的第一单元的输出有效地区分了异常情况下的数据和正常情况下的数据。通过在故障检测后实施纠正措施,最终生产量增加到没有诊断时的两倍。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Shimizu et al.: "On-line fault diagnosis for optimal rice-αamylase production process of temperature-sensitive mutant of Saccharomyces cerevisiae by autoassociative neural network" J.Fermentation and Bioengineering. 83(5). 435-442 (1997)
H.Shimizu 等人:“通过自关联神经网络对酿酒酵母温度敏感突变体的最佳水稻-α淀粉酶生产过程进行在线故障诊断”J.Fermentation and Bioengineering 83(5) (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi SHIMIZU,Kouichi YASUOKA,Keiji UCHIYAMA,and Suteaki SHIOYA: "Bioprocess fault detection by nonlinear multivariate analysis : application of artificial autoassociative neural network and wavelet filter bank" Biotechnology Progress. 14 (1). 79-87 (19
Hiroshi SHIMIZU、Kouichi Yasuoka、Keiji UCHIYAMA 和 Suteaki SHIOYA:“非线性多元分析的生物过程故障检测:人工自关联神经网络和小波滤波器组的应用”生物技术进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Shimizu et al.: "Bioprocess fault detection by nonlinear multivariate analysis:application of artificial autoassociative neural network and wavelet filter bank" Biotechnology Progress. 14(1). 79-87 (1998)
H.Shimizu等人:“非线性多元分析的生物过程故障检测:人工自联想神经网络和小波滤波器组的应用”生物技术进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi SHIMIZU,Kouichi YASUOKA,Keiji UCHIYAMA,and Suteaki SHIOYA: "On-line fault diagnosis for optimal rice-alphaamylase production process of temperature-sensitive mutant of Saccharomyces cerevisiae by autoassociative neural network" Journal Fermentatio
Hiroshi SHIMIZU、Kouichi Yasuoka、Keiji UCHIYAMA 和 Suteaki SHIOYA:“通过自联想神经网络对酿酒酵母温度敏感突变体的最佳水稻 α 淀粉酶生产过程进行在线故障诊断” Journal Fermentatio
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Shimizu etal..: "On-line fault diagnosis for optimal rice α-amylase production process ofa temperature-sensitive mutant of S.cerevisiae by AANN" Journal of Fermentation and Bioengineering. 83(5). 435-442 (1997)
H.Shimizu 等人:“AANN 对酿酒酵母温度敏感突变体的水稻最佳 α-淀粉酶生产过程的在线故障诊断”《发酵与生物工程杂志》83(5) (1997)。 )
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIOYA Suteaki其他文献
SHIOYA Suteaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIOYA Suteaki', 18)}}的其他基金
Novel Onsite Transformation of Plant by Direct DNA Introduction
通过直接 DNA 导入对植物进行新型现场转化
- 批准号:
22656192 - 财政年份:2010
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of a tracking method for minor group in microbial community and its industrial application
微生物群落少数类群追踪方法的建立及其工业应用
- 批准号:
19360374 - 财政年份:2007
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bio-Resources Database of Lactic Acid Bacteria on Asian Researchers Network
亚洲研究人员网络乳酸菌生物资源数据库
- 批准号:
16404020 - 财政年份:2004
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Strategy for Fermentative Production Based on Symbiosis of Microorganisms
基于微生物共生的发酵生产策略的开发
- 批准号:
15360441 - 财政年份:2003
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of sugar moiety of enterocin from Enterococcus faecium N15
屎肠球菌 N15 肠菌素糖部分的分析
- 批准号:
12650785 - 财政年份:2000
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Isolation of a novel bacteriocin-producing lactic acid bacteria and its use in food preservation
一株新型产细菌素乳酸菌的分离及其在食品保鲜中的应用
- 批准号:
10450311 - 财政年份:1998
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Role of Lactic Acid Bacteria and its Application to Fermentation Processes by Ecosystem Engineering Approach.
乳酸菌的作用及其通过生态系统工程方法在发酵过程中的应用。
- 批准号:
06454036 - 财政年份:1994
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Construction of Useful Temperature-dependent Gene Expresssion System in S. cerevisiae and It's Application to a Cultivation Process
酿酒酵母有用温度依赖性基因表达系统的构建及其在培养过程中的应用
- 批准号:
03650772 - 财政年份:1991
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)