INFORMATION DYNAMICAL STUDY OF OPTICAL COMMUNICATION THEORY
光通信理论的信息动态研究
基本信息
- 批准号:08640240
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main purpose of our joint research program is to study optical communication theoty based on Information Dynamics (ID for short). The concept of ID is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems altogether. We have studied the following topics during the period of the joint research program :[1] Quantum Information : Quantum information theory has been developed from entropy theory and quantum statistics, and several concepts such as quantum mutual entropy and capacity in this theory play fundamental roles in recent development of optical communication and quantum computer. Furthermore, we (Ohya, Suyari, Watanabe) studied the following topics of quantum information Theory ; (1) channels, liftings, mathematical expression of beam splitting process, (2) optical modulations, (3) amplification process, (4) multiple attenuation p**cess, (5) capacity of quantum channels.[2] Quant … More um Computer : A fundamental object for quantum computation is the entangled state. Mathematical construction and classificaton of the entangled states have been studied by Belavkin and Ohya. Ohya and Watanabe reformulated the FTM (Fredkin - Toffoli - Milbum) gate by means of quantum channel and rigorously proved the information conservation in the FTM gate. The mathematical construction of quantum logical gate was studied by [Ohya, Watanabe] based on symmetric Fock spces. A nonlinear channel for a quantum teleportation process is rigorously constructed by [Ohya, Suyari, Inoue].[3] Complexity : Ohya proposed a new theory of the complexity, ID, which has been applied to various studies such that (1) quantum communication, (3) description of chaos, (4) dynamical entropy, (5) characterization of shapes. In particular, in the framework of ID, new measures for complex system, that is, the fractal dimensions for states and the chaos degree have been introduced, which enabled us to characterize chaotic aspects of the dynamics associated to several systems. We [Ohya, Inoue, Matsuoka] have studied several fields using these new measures. Less
我们联合研究计划的主要目的是研究基于信息动力学的光通信理论。ID的概念是状态变化动力学和复杂性理论的综合,这两个理论提供了一个共同的框架来同时处理物理和非物理系统。[1]量子信息:量子信息理论是由熵理论和量子统计发展而来的,量子信息理论中的量子互熵和量子容量等概念在近期光通信和量子计算机的发展中起着基础性的作用。此外,我们(Ohya,Suyari,Watanabe)研究了量子信息论的下列主题:(1)通道、提升、分束过程的数学表达式、(2)光调制、(3)放大过程、(4)多重衰减过程、(5)量子通道的容量。[2]Quant…更多的计算机:量子计算的一个基本对象是纠缠态。Belavkin和Ohya研究了纠缠态的数学结构和分类。Ohya和Watanabe利用量子通道重新构造了FTM(Fredkin-Toffoli-Milban)门,并严格证明了FTM门的信息守恒性。[Ohya,Watanabe]基于对称Fock空间研究了量子逻辑门的数学构造。Ohya[Ohya,Suyari,Inoue]严格地构造了量子隐形传态过程的非线性信道。[3]复杂性:Ohya提出了一个新的复杂性理论ID,该理论已被应用于各种研究,如:(1)量子通信,(3)混沌描述,(4)动力熵,(5)形状表征。特别是,在ID的框架下,引入了复杂系统的新度量,即状态的分维和混沌度,这使得我们能够刻画与多个系统相关的动力学的混沌方面。我们[Ohya,Inoue,Matsuoka]已经使用这些新的测量方法研究了几个领域。较少
项目成果
期刊论文数量(160)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L.Accardi, M.Ohya, N.Watanabe: "Note on quantum dynamical entropies" Reports on Mathematical Physics. 38. 457-469 (1996)
L.Accardi、M.Ohya、N.Watanabe:“关于量子动态熵的注释”数学物理报告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ohya, D.Petz: "Notes on quantum entropy" Studia Scientiarum Mathematicarum Hungaria. 31. 433-430 (1996)
M.Ohya、D.Petz:“量子熵笔记”Studia Scientiarum Mathematicarum Hungaria。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Muraki, M.Ohya: "Entropy functionals of Kolmogoros-Sinai type and their limit theoreme" Letter in Mathematical Physics. 36. 327-335 (1996)
N.Muraki,M.Ohya:“Kolmogoros-Sinai 类型的熵泛函及其极限定理”数学物理学中的信件。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L.Accardi, M.Ohya: "Conpound channels, traneition expectations, and liftings" Appl.Math.Optim.39. 33-59 (1999)
L.Accardi、M.Ohya:“复合通道、传输期望和提升”Appl.Math.Optim.39。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Inoue, M.Ohya: "chaos degree and its applications to quantum dynamical system" The Proceeding of 3rd International Conference on computatinal Intelligence and Newrosience. 2. 167-169 (1998)
K.Inoue、M.Ohya:“混沌度及其在量子动力系统中的应用”第三届计算智能与新科学国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Noboru其他文献
WATANABE Noboru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Noboru', 18)}}的其他基金
Research on construction of local public sphere in the area where the nuclear power plant is located for Post Fukuichi society
后福市社会核电站所在地地区公共领域建设研究
- 批准号:
17K04120 - 财政年份:2017
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on construction of local public sphere for Post Fukuichi society (not dependent on nuclear power)
后福市社会的地方公共领域建设研究(不依赖核电)
- 批准号:
26380673 - 财政年份:2014
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a method to observe the phase of electronic wave functions by means of interference phenomena in inelastic electron scattering processes
开发利用非弹性电子散射过程中的干涉现象观察电子波函数相位的方法
- 批准号:
25620006 - 财政年份:2013
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Unoccupied molecular orbital imaging by electron-ion coincidence spectroscopy
电子-离子符合光谱的未占据分子轨道成像
- 批准号:
22550002 - 财政年份:2010
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative analysis of Local Initiative and Citizen Movements : Japan and South Korea
地方倡议和公民运动的比较分析:日本和韩国
- 批准号:
18530374 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY FOR ESTABLISHING THE FOUNDATION OF QUANTUM CORDING THEOREMS
建立量子绳定理基础的研究
- 批准号:
18540141 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the possibility of constructing a new "public sphere" in local community
论构建地方社区新“公共领域”的可能性
- 批准号:
15530322 - 财政年份:2003
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STUDIES ON CLASSIFICATION OF QUANTUM CHANNEL INCLUDING QUANTUM TELEPORTATION AND FORMULATION OF QUANTUM LOGIC GATES
量子通道分类(包括量子隐形传态)和量子逻辑门的制定的研究
- 批准号:
14540138 - 财政年份:2002
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the conditions for promoting women's political participation in 'local government'
促进妇女参政“地方政府”的条件分析
- 批准号:
12610170 - 财政年份:2000
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Women's political participation at the community level
妇女在社区一级的政治参与
- 批准号:
09410053 - 财政年份:1997
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Mutual entropy of entanglement quantum channels and the basis of formulation of the quantum coding theorem
纠缠量子通道的互熵和量子编码定理的表述基础
- 批准号:
15K04983 - 财政年份:2015
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)