Research on infinite precision numerical simulation of partial differential equations

偏微分方程无限精度数值模拟研究

基本信息

  • 批准号:
    10354001
  • 负责人:
  • 金额:
    $ 17.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

In the term of the project (three years) many results were obtained. Important results are shown as follows.1. Building of the parallel computing environment.High-performance workstations were purchased and connected by the high-speed network. PVM (Parallel Virtual Machine) was implemented on these workstations. Thus, the parallel computing environment was built at Imai's laboratory at Tokusima University.2. Development of Infinite Precision Numerical Simulation.Errors in numerical simulations originate from truncation errors in discretization and rounding errors. Infinite Precision Numerical Simulation was developed by combining the spectral (collocation) method and multiple precision arithmetic. The spectral (collocation) method is used for the control of truncation errors. Multiple precision arithmetic is used for the control of rounding errors. The method was applied to PDE systems with smooth solutions. The feature of the method, i.e. arbitrary reduction of errors, was observed. In a one-dimensional boundary value problem errors were approximately 10^<-2300>. This is incredible compared with results by other numerical methods.3. Development of the library and its release.The library for Infinite Precision Numerical Simulation was developed. The subroutine of Gauss elimination in multiple precision arithmetic was developed. Its parallelization was performed by using PVM.The library was released by up-loading the report of the research project on Imai's home page.4. Related results.Many related results were obtained as for development of infinite magnifying in visualization, development of parallel computing by using domain decomposition, basic research and application of Infinite Precision Numerical Simulation to inverse problems, free boundary problems and fluid mechanics, research on verification.
在项目实施期间(三年),取得了许多成果。主要结果如下:1.并行计算环境的建立。购买了高性能工作站,并通过高速网络连接。PVM(并行虚拟机)在这些工作站上实现。因此,并行计算环境在Tokusima大学的Imai实验室建立。无限精度数值模拟的发展数值模拟中的误差来源于离散化中的截断误差和舍入误差。将谱配点法与多精度算法相结合,发展了无限精度数值模拟方法。谱(配点)法用于截断误差的控制。采用多精度算法控制舍入误差。将该方法应用于具有光滑解的偏微分方程组。观察到该方法的特点,即任意减少误差。在一维边值问题中,误差约为10^<-2300>。这与其他数值方法的结果相比是令人难以置信的。库的开发及其发布。开发了无限精度数值模拟库。开发了多精度算法中的高斯消去子程序。利用PVM实现了该库的并行化,并通过在Imai的主页上加载该研究项目的报告发布了该库.相关成果:在可视化无限放大技术的发展、区域分解并行计算技术的发展、无穷高精度数值模拟在反问题、自由边界问题、流体力学中的基础研究与应用、验证研究等方面取得了许多相关成果。

项目成果

期刊论文数量(89)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Tabata: "A precise computation of drag coefficients of a sphere"The International Journal of Computational Fluid Dynamics. Vol.9. 303-311 (1998)
M.Tabata:“球体阻力系数的精确计算”国际计算流体动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shoichi Fujima: "Mortar element method for flow problems in primitive variables form" International Journal of Computational Fluid Dynamics. vol.9. 209-219 (1998)
Shoichi Fujima:“原始变量形式流动问题的砂浆元法”国际计算流体动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nishida: "Bifurcation problems for equations of fluid dynamics and computer assisted proof"Taiwanese Journal of Mathematics. Vol.4,No.1. 119-127 (2000)
T.Nishida:“流体动力学方程的分岔问题和计算机辅助证明”台湾数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.IMAI (Coauthor : T.TAKEUCHI): "On Numerical Simulation of Partial Differential Equations in Infinite Precision"Advances in Mathematical Sciences and Applications. Vol.9, No.2. 1007-1016 (1999)
H.IMAI(合著者:T.TAKEUCHI):“无限精度偏微分方程的数值模拟”数学科学与应用的进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Pyi Ay (Coauthor : T.Nishida): "Heat convection of compressible fluid, in Recent Developments in Domain Decomposition Methods and Flow Problems"Mathematical Sciences and Applications. Vol.11. 107-115 (1998)
Pyi Ay(合著者:T.Nishida):“可压缩流体的热对流,域分解方法和流动问题的最新进展”数学科学与应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMAI Hitoshi其他文献

High-Precision Numerical Computation of Integral Equation of the First Kind
第一类积分方程的高精度数值计算

IMAI Hitoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMAI Hitoshi', 18)}}的其他基金

Numerical analysis of the chaotic bahavior of the free boundary
自由边界混沌行为的数值分析
  • 批准号:
    09440080
  • 财政年份:
    1997
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Standard Grant
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
  • 批准号:
    2239350
  • 财政年份:
    2023
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Continuing Grant
CAREER: Data-Centric Evolutionary Contagion Models with Parallel and Quantum Parallel Computing
职业:具有并行和量子并行计算的以数据为中心的进化传染模型
  • 批准号:
    2236854
  • 财政年份:
    2023
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Continuing Grant
HyperTran: High-Performance Transient Stability Simulation of Power Systems on Modern Parallel Computing Hardware
HyperTran:在现代并行计算硬件上对电力系统进行高性能暂态稳定性仿真
  • 批准号:
    2226826
  • 财政年份:
    2022
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Standard Grant
ROM for FSI analysis in distributed memory parallel computing
用于分布式内存并行计算中FSI分析的ROM
  • 批准号:
    22K17902
  • 财政年份:
    2022
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2022
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2021
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Discovery Grants Program - Individual
Development of large-sized nonlinear vibration analysis, based on parallel computing
基于并行计算的大型非线性振动分析的发展
  • 批准号:
    21K03939
  • 财政年份:
    2021
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scalable System Software for Machine Learning on Heterogeneous Parallel Computing Environments
用于异构并行计算环境上的机器学习的可扩展系统软件
  • 批准号:
    20H04165
  • 财政年份:
    2020
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of integrated circuits constructed from DNA analogues and application to parallel computing using DNA
由 DNA 类似物构建的集成电路的开发以及使用 DNA 的并行计算的应用
  • 批准号:
    20K04603
  • 财政年份:
    2020
  • 资助金额:
    $ 17.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了