Grobner asymptotic expansion for regular holononic systems
正则完整子系统的 Grobner 渐近展开式
基本信息
- 批准号:10440044
- 负责人:
- 金额:$ 2.88万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We establish a method to analyze asymptotic behavior of regular holonopic systems at infinity. The first order approximation is governed by the initial system. In case of GKZ hypergeometric systems, the correspondiny systems are essentially monomial ideals and hence can be analyzed by nsins combinatorial methods for them.Our research project develops to the following new directions.(1)Bayer and Sturmfels showed recently that monomial ideals can be studied through graph theory an stairs. Their method can be applied to study GKZ hypergeometric systems.(2)Our method to determine asymptotic behavior will be a foundation to study the rational solutions and the global solutions. Some hypergeometric systems are special solutions of Painleve systems. There will be an exciting interaction between studies on Painleve systems and hypergeometric systems on the rational solutions, isomorphism problem and the global solutions.(3)It is an important problem to determine the asymptotic behaviors around an irregular singular point. It, however, is still open.
我们建立了一种分析无穷远正则全息系统渐近行为的方法。一阶近似由初始系统控制。对于GKZ超几何系统,相应的系统本质上是单项式理想,因此可以通过nsins组合方法对其进行分析。我们的研究项目向以下新方向发展。(1)Bayer和Sturmfels最近表明单项式理想可以通过图论和阶梯来研究。他们的方法可以应用于研究GKZ超几何系统。(2)我们确定渐近行为的方法将为研究有理解和全局解奠定基础。一些超几何系统是 Painleve 系统的特殊解。 Painleve系统和超几何系统的有理解、同构问题和全局解的研究将会产生令人兴奋的互动。(3)确定不规则奇点周围的渐近行为是一个重要的问题。然而,它仍然开放。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matsumi Saito: "Hypergeometric Polynomials and Integer Programming"Composition Mathematics. 115. 185-204 (1995)
Matsumi Saito:《超几何多项式和整数规划》组合数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mutsumi Saito: "Hypergeonotric Polynomials and Integer Programming"Composition Mathematics. 115. 185-204 (1999)
Mutsumi Saito:“超几何多项式和整数规划”复合数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Saito, B.Sturnfelds, N.Takayama: "Grobner deformations of hypergeometric differential equations"Springer. (1999)
M.Saito、B.Sturnfelds、N.Takayama:“超几何微分方程的格罗布纳变形”施普林格。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IKEDA Hiroshi其他文献
Castable polymer-infiltrated ceramic network composite for training model tooth with compatible machinability to human enamel
用于训练模型牙齿的可浇铸聚合物渗透陶瓷网络复合材料,具有与人类牙釉质兼容的机械加工性能
- DOI:
10.4012/dmj.2021-299 - 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
TOKUNAGA Jumpei;IKEDA Hiroshi;NAGAMATSU Yuki;AWANO Shuji;SHIMIZU Hiroshi - 通讯作者:
SHIMIZU Hiroshi
IKEDA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IKEDA Hiroshi', 18)}}的其他基金
Conceptualization and determinants of followership in work organizations: Toward the development of effective followership
工作组织中追随者的概念和决定因素:发展有效的追随者
- 批准号:
16K04282 - 财政年份:2016
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The range expansion pattern and ecologial release of invasive soil invertebrates
入侵土壤无脊椎动物的范围扩展模式和生态释放
- 批准号:
25891002 - 财政年份:2013
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
"One-Electron Sigma Bond" - A Challenge to a New Theory of the Chemical Bond Developed by Using Radical Cations
“单电子西格玛键”——对利用自由基阳离子开发的化学键新理论的挑战
- 批准号:
24655037 - 财政年份:2012
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Application of fractal on huge surface area of porous materials
分形在大表面积多孔材料中的应用
- 批准号:
24760564 - 财政年份:2012
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Systematic analyses for the Pan-Himalayan flora based on genetical and species diversities
基于遗传和物种多样性的泛喜马拉雅植物区系的系统分析
- 批准号:
23255005 - 财政年份:2011
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The mechanism of hyperalgesia in the spinal dorsal horn revealed by imaging of neuronal activity
神经元活动成像揭示脊髓背角痛觉过敏机制
- 批准号:
22600005 - 财政年份:2010
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phylogeographical study on widely-distributed and local endemicspecies
广泛分布和地方特有物种的系统发育地理学研究
- 批准号:
22570085 - 财政年份:2010
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Challenge to "Organic Radical Light-emitting Diode" Utilizing Stable Radicals
利用稳定自由基对“有机自由基发光二极管”的挑战
- 批准号:
21655016 - 财政年份:2009
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The neuronal plasticity in the spinal dorsal horn revealed by simultaneous imaging of neuronal and glial activity
通过神经元和神经胶质活动的同步成像揭示脊髓背角的神经元可塑性
- 批准号:
20700348 - 财政年份:2008
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on the modeling theory pertaining to the sources of developing confidence towards employment
就业信心来源的建模理论研究
- 批准号:
20730410 - 财政年份:2008
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Parallel techniques in the context of change of monomial ordering for Grobner basis
格罗布纳基单项式排序变化背景下的并行技术
- 批准号:
542270-2019 - 财政年份:2019
- 资助金额:
$ 2.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of the optimal parameter tuning method based on Grobner basis for the model predictive controller
开发基于 Grobner 基础的模型预测控制器最优参数整定方法
- 批准号:
15K21591 - 财政年份:2015
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
SGER: Static Voltage Stability Analysis using Grobner Basis Techniques
SGER:使用 Grobner 基础技术的静态电压稳定性分析
- 批准号:
0839176 - 财政年份:2008
- 资助金额:
$ 2.88万 - 项目类别:
Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
- 批准号:
19760269 - 财政年份:2007
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Verification of the efficiency of the Grobner Basis for Various Combinatorial Problems
验证 Grobner 基对于各种组合问题的效率
- 批准号:
18540145 - 财政年份:2006
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




