Statistical Inference on Multivariate Nonlinear Time Series Models : Simulation Based Approach
多元非线性时间序列模型的统计推断:基于仿真的方法
基本信息
- 批准号:10630020
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method. The time varying method allows for a locally (non)linear model. The methods are applied to data from two kinds of disciplines : the Canadian lynx and sunspot series from the natural sciences, and Nelson-Plosser's U.S. series from economics. It is shown that the combined forecasts perform well, especially with time varying coefficients. This result holds for out of sample performance for the sunspot and Canadian lynx number series, but it does not uniformly hold for economic time series.Further this project considered a framework of testing continuous time nonlinear business cycle models by using discrete observations through time discretization in terms of "Local Linearization(L.L.)" method. We employ a Bayesian inference on the conditions for the models to be valid as business cycle models, which are represented in the form of inequality of some function of parameters. A computationally efficient algorithm of Monte Carlo integration for that problem is proposed and applied to data of the U.S. and Japan.Finally, for analyzing multivariate market share time series, I proposed a dynamic market share model with "logical consistency" by using Bayesian VAR model. The proposed method makes it possible to forecast not only the values of market share by themselves, but also various dynamic market share relations across different brands or companies.
针对可能具有非线性特征的时间序列,研究了线性模型和非线性模型的组合预测问题。预测采用常系数回归法和时变法相结合。时变方法允许局部(非线性)线性模型。这些方法被应用于两种学科的数据:来自自然科学的加拿大山猫和太阳黑子系列,以及来自经济学的纳尔逊-普洛瑟的美国系列。结果表明,组合预测效果较好,特别是在系数随时间变化的情况下。这一结果对太阳黑子和加拿大山猫数序列的样本外表现是成立的,但对经济时间序列并不一致。此外,本项目考虑了一个框架,通过时间离散化利用离散观测来检验连续时间的非线性经济周期模型。方法。我们利用贝叶斯推理对模型作为经济周期模型有效的条件进行推断,这些条件以参数的某个函数的不等式的形式表示。最后,为了分析多元市场份额时间序列,利用贝叶斯VAR模型建立了一个具有“逻辑一致性”的动态市场份额模型。该方法不仅可以预测市场占有率的价值,还可以预测不同品牌或公司之间的各种动态市场占有率关系。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nobuhiko Terui and Herman van Pijk: "Composite Forecasts of Linear and Nonlinear Time Series Models"Working paper, Institute of Economic Research, Kyoto Univ. A-49. (1998)
Nobuhiko Terui 和 Herman van Pijk:“线性和非线性时间序列模型的复合预测”工作论文,京都大学经济研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuhiko Terui, Herman van Dijk: "Composite Forecasts of Linear and Nonlinear Time Sevice Models" Discussin Paper, Center for the Study of Complex Economic Systems, Institute of Economic Researchi, Kyoto University. A-49. 1-29 (1998)
Nobuhiko Terui、Herman van Dijk:“线性和非线性时间服务模型的综合预测”讨论论文,京都大学经济研究所复杂经济系统研究中心。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuhiko Terui and Herman van Dijk: "Composite Forecasts of Linear and Nonlinear Time Series Models"Working Paper, Institute of Economic Research, Kyoto Univ.. A-49. (1998)
Nobuhiko Terui 和 Herman van Dijk:“线性和非线性时间序列模型的复合预测”工作论文,京都大学经济研究所。A-49。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuhiko Terui and Herman van Dijk: "Composite Forecasts of Linear and Nonlinear Time Series Models"Working Paper, Institute of Economic Research Kyoto University. A-49. (1998)
Nobuhiko Terui 和 Herman van Dijk:“线性和非线性时间序列模型的复合预测”工作论文,京都大学经济研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuhiko Terui: "Forecasting Dynamic Market Share Relationships"Marketing Intelligence and Planning. 18. 67-77 (2000)
Nobuhiko Terui:“预测动态市场份额关系”营销情报和规划。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERUI Nobuhiko其他文献
TERUI Nobuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERUI Nobuhiko', 18)}}的其他基金
New Direction of CRM by Fusing Database Marketing and Consumer Theory
融合数据库营销与消费者理论的CRM新方向
- 批准号:
21243030 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Nonlinear dynamic micro-structural modeling on limited dependent variable models and their applications
有限因变量模型的非线性动态微观结构建模及其应用
- 批准号:
18530152 - 财政年份:2006
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modeling of economic time series based on the tests of multivariate Gaussianity and linearity
基于多元高斯性和线性检验的经济时间序列统计建模
- 批准号:
15530137 - 财政年份:2003
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Testing Gaussianity and Linearity in Multivariate Time Series and Their Applications
检验多元时间序列中的高斯性和线性及其应用
- 批准号:
12630024 - 财政年份:2000
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Validation of the PIP3 Threshold Model in Melanoma Progression and Resistance to Treatment
黑色素瘤进展和治疗耐药性中 PIP3 阈值模型的验证
- 批准号:
18K08288 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on cognitive processes of situations in "spiral-of-silence = threshold model" model
“沉默螺旋=阈值模型”模型情境认知过程研究
- 批准号:
15K00463 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Workshop - Predicting Zoonotic Outbreaks: Building on the Plague Threshold Model
研讨会 - 预测人畜共患病爆发:建立在鼠疫阈值模型的基础上
- 批准号:
NE/E007899/1 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
A STATISTICAL THRESHOLD MODEL FOR MATERNAL DEVELOPMENT TOXICITY DATA
孕产妇发育毒性数据的统计阈值模型
- 批准号:
3955048 - 财政年份:
- 资助金额:
$ 1.09万 - 项目类别:
STATISTICAL THRESHOLD MODEL FOR MATERNAL/DEVELOPMENTAL TOXICITY DATA
母体/发育毒性数据的统计阈值模型
- 批准号:
3932398 - 财政年份:
- 资助金额:
$ 1.09万 - 项目类别: