Testing Gaussianity and Linearity in Multivariate Time Series and Their Applications
检验多元时间序列中的高斯性和线性及其应用
基本信息
- 批准号:12630024
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Based on a characterization of orthogonality of Gaussian random variates after Hermitian polynomials transformation, we developed a Gaussianity teat for multivariate stationary time series, where a univariate Gaussianity test proposed by Kariya, Tsay Terui and Li(1998) was extended to multivariate situation. Our simulation study showed that the proposed test has reasonable power and outperforms multivariate bispectrum test available in the literature when the innovation series of the time series is symmetric, but non-Gaussian.Testing Gaussianity is closely related to testing linearity for univariate time series analysis, because nonlinearity implies non-normality in a regular time series. Extending to multivariate situation, it does not always holdbecause of their inter-relationship between marginal series. That is, non-Gaussianity of each marginal series does not always require non-linear modeling of multivariate series as a whole. We introduced a multivariate time series model, we call multivariate time series with common non-Gaussian component, which represents the above relationship and we used the proponed test to detect it. In case of that, the proposed multivariate Gaussianity test was modified so as to decompose the omnibus teats into two orthogonal tests statistics, each of which test the Gaussianity for marginal series and the inter-relational Gaussianity respectively.Further some modification of tests was proposed to accommodate the inconsistency between marginal tests and omnibus test and we showed that it gave a useful insight of inter-relationship between marginal time series for multivariate time series with common non-Gaussian component. This reduces the burden of non-Gaussian modeling, equivalently non-linear modeling in a sense, into linear Gaussian modeling.
基于高斯随机变量经Hermitian多项式变换后的正交性的一个特征,将卡里耶,Tsay Terui和Li(1998)提出的一元高斯性检验推广到多元平稳时间序列,提出了一种多元平稳时间序列的高斯性检验方法.我们的模拟研究表明,提出的测试有合理的权力和多元双谱检验在文献中提供的时间序列的新息序列是对称的,但non-Gaussianity是密切相关的检验线性的时间序列分析,因为非线性意味着非正态性的一个规则的时间序列。扩展到多元情形,由于边际序列之间的相互关系,它并不总是成立的。也就是说,每个边际序列的非高斯性并不总是需要将多变量序列作为一个整体进行非线性建模。本文引入了一种多元时间序列模型,称之为具有共同非高斯分量的多元时间序列,它代表了上述关系,并利用提出的检验方法来检验这一关系,在此基础上,对提出的多元高斯检验方法进行了改进,将综合检验分解为两个正交检验统计量,每一个测试的高斯边际系列和内部,进一步提出了一些修正的测试,以适应边缘测试和综合测试之间的不一致,我们表明,这为研究具有共同非高斯成分的多元时间序列的边际时间序列之间的相互关系提供了有益的启示。这减少了非高斯建模的负担,在某种意义上等效于非线性建模为线性高斯建模。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terui, N., Y.Imano: "Estimating Latitude of Price Acceptance with Asymmetric Dynamic Market Response in Consumer"Working Paper(TM&ARG) at Tohoku University. 64. 1-27 (2002)
Terui, N., Y.Imano:“通过消费者的不对称动态市场反应来估计价格接受度”工作论文(TM
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yachi, S., M.Kikuchi, N.Terui: "On the power of tests for spatial correlation"Discussion Paper(TERG), Graduate School of Economics and Management, Tohoku University. No.155. 1-8 (2001)
Yachi, S.、M.Kikuchi、N.Terui:“论空间相关性检验的力量”讨论论文(TERG),东北大学经济管理研究生院。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Terui, N., Y.Imano: "Testing Multivariate Gaussianity by Hermitean Polynomial Transformations"Working Paper(TM&ARG) at Tohoku University. No.66. 1-30 (2003)
Terui, N., Y.Imano:“通过 Hermitean 多项式变换测试多元高斯性”工作论文(TM
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuhiko Terui: "Measuring Delayed and Long-Run Effects of Pricing to Market Shares: A Bayesian Attraction Models Approach"Working Paper(TM&ARG), Graduate School of Economics and Management, Tohoku University. No.57. 1-32 (2000)
Nobuhiko Terui:“衡量定价对市场份额的延迟和长期影响:贝叶斯吸引力模型方法”工作论文(TM)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小暮厚之, 照井伸彦: "計量ファイナンス分析の基礎"朝倉書店. 248 (2001)
小暮敦幸、照井信彦:《定量金融分析基础》朝仓书店 248 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERUI Nobuhiko其他文献
TERUI Nobuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERUI Nobuhiko', 18)}}的其他基金
New Direction of CRM by Fusing Database Marketing and Consumer Theory
融合数据库营销与消费者理论的CRM新方向
- 批准号:
21243030 - 财政年份:2009
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Nonlinear dynamic micro-structural modeling on limited dependent variable models and their applications
有限因变量模型的非线性动态微观结构建模及其应用
- 批准号:
18530152 - 财政年份:2006
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modeling of economic time series based on the tests of multivariate Gaussianity and linearity
基于多元高斯性和线性检验的经济时间序列统计建模
- 批准号:
15530137 - 财政年份:2003
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Inference on Multivariate Nonlinear Time Series Models : Simulation Based Approach
多元非线性时间序列模型的统计推断:基于仿真的方法
- 批准号:
10630020 - 财政年份:1998
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)