Statistical modeling of economic time series based on the tests of multivariate Gaussianity and linearity

基于多元高斯性和线性检验的经济时间序列统计建模

基本信息

  • 批准号:
    15530137
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Based on a characterization of orthogonality of Gaussian random variates after Hermitian polynomials transformation, we develop a Gaussianity test for multivariate stationary time series, where amultivariate Gaussianity test proposed by Terui and Imano(2003), I conducted the research on the statistical modeling of economic time series based on the tests of multivariate Gaussianity and linearity as follows.1.The improvement of speed of convergence of test statistics for multivariate Gaussinaity was conducted by using Bootstrap.2.I conducted the research that generalizes the combined forecasts between linear nad some nonlinear time series forecasts by Terui and van Dijk(2002) for univariate time series to multivariate series.3.As a statistical modeling of non-Gaussian time series, I did the research of time series models for count data, such as multinomial and poison variables. The dynamic Bayesian linear modeling by using state space representation and their MCMC algorithm was investigated. I showed that this modeling could be useful for sale forecasting of number of sales of product, where the market expansion and shrink can be incorporated in the model.4.I gave a dynamic forecasting model that accommodates asymmetric market responses to marketing mix variable - price promotion - by threshold models. As a threshold variable to generate a mechanism for different market responses, we use the counterpart to the concept of a price threshold applied to a representative consumer in a store. A Bayesian approach is taken for statistical modeling because of advantages that it offers over estimation and forecasting. The proposed model incorporates the lagged effects of a price variable. Thereby, myriad pricing strategies can be implemented in the time horizon. Their effectiveness can be evaluated using the predictive density. We intend to improve the forecasting performance over conventional linear time series models.
基于高斯随机变量经Hermitian多项式变换后的正交性特征,本文提出了一种多元平稳时间序列的高斯性检验方法,其中Terui和Imano(2003)提出的多元高斯性检验,本文在多元高斯性检验和线性检验的基础上,对经济时间序列的统计建模进行了如下研究:1.提高了统计模型的收敛速度,2.将Terui和货车Dijk(2002)提出的线性和非线性时间序列的组合预测方法推广到多元时间序列; 3.作为非高斯时间序列的统计建模,研究了计数型数据的时间序列模型,如多项式和毒药变量。研究了基于状态空间表示的动态贝叶斯线性建模及其MCMC算法。我表明,这种模型可以用于销售预测的产品销售数量,其中市场的扩张和收缩可以纳入模型。4.我给了一个动态预测模型,适应不对称的市场反应的营销组合可变价格促销的阈值模型。作为一个阈值变量,以产生不同的市场反应的机制,我们使用对应的价格阈值的概念,适用于一个代表性的消费者在商店。贝叶斯方法被用于统计建模,因为它提供了超过估计和预测的优势。该模型包含了价格变量的滞后效应。因此,无数的定价策略可以在时间范围内实施。它们的有效性可以使用预测密度来评估。我们打算提高传统的线性时间序列模型的预测性能。

项目成果

期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Threshold Choice Model for Asymmetric Market Response and Segmentation
非对称市场响应和细分的阈值选择模型
Proceedings of the 2005 International Workshop on Customer Relationship Management : Data mining Meets Marketing
2005 年客户关系管理国际研讨会论文集:数据挖掘与营销的结合
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terui;Wago;Higuchi;Abe eds
  • 通讯作者:
    Abe eds
Price customization using price thresholds estimated from scanner panel data
使用根据扫描仪面板数据估计的价格阈值进行价格定制
Bayesian Econometrics (In Japanese)
贝叶斯计量经济学(日语)
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terui;N.;H.Wago;T.Higuchi;M.Abe eds.;Wago et al. eds
  • 通讯作者:
    Wago et al. eds
Forecasting model with asymmetric market response and its application to pricing in consumer package goods
市场反应不对称的预测模型及其在消费品定价中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TERUI Nobuhiko其他文献

TERUI Nobuhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TERUI Nobuhiko', 18)}}的其他基金

New Direction of CRM by Fusing Database Marketing and Consumer Theory
融合数据库营销与消费者理论的CRM新方向
  • 批准号:
    21243030
  • 财政年份:
    2009
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nonlinear dynamic micro-structural modeling on limited dependent variable models and their applications
有限因变量模型的非线性动态微观结构建模及其应用
  • 批准号:
    18530152
  • 财政年份:
    2006
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Testing Gaussianity and Linearity in Multivariate Time Series and Their Applications
检验多元时间序列中的高斯性和线性及其应用
  • 批准号:
    12630024
  • 财政年份:
    2000
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Inference on Multivariate Nonlinear Time Series Models : Simulation Based Approach
多元非线性时间序列模型的统计推断:基于仿真的方法
  • 批准号:
    10630020
  • 财政年份:
    1998
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
  • 批准号:
    2245492
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 1: Addressing Measurement Limitations for Sequence Count Data
DMS/NIGMS 1:解决序列计数数据的测量限制
  • 批准号:
    10592455
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
Ensemble-based filtering for uncovering an influence network from Hawkes processes driven by count data
基于集成的过滤,用于揭示由计数数据驱动的霍克斯过程的影响网络
  • 批准号:
    EP/W02084X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Research Grant
DMS/NIGMS 1: Addressing Measurement Limitations for Sequence Count Data
DMS/NIGMS 1:解决序列计数数据的测量限制
  • 批准号:
    10706578
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
Statistical Methods for Analyzing Complex Structured and Count Data
分析复杂结构化和计数数据的统计方法
  • 批准号:
    2210019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
Models and Statistical Inference for Multivariate Count Data
多元计数数据的模型和统计推断
  • 批准号:
    542506-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Statistical Methods of Meta-Analysis for Count Data with Rare Events
罕见事件计数数据荟萃分析的统计方法
  • 批准号:
    430210250
  • 财政年份:
    2019
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Research Grants
Online prediction of the numbers of visitors and shop-around movements among multiple commercial facilities within a city center using their time-series count data of incoming customers
使用入店顾客的时间序列计数数据在线预测市中心内多个商业设施之间的访客数量和货比三家流动
  • 批准号:
    18K01904
  • 财政年份:
    2018
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Panel Count Data with Dynamic Random Effects in Actuarial Sciences
精算科学中具有动态随机效应的面板计数数据
  • 批准号:
    356489-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Catalyst Project: Modeling Count Data with the Conway-Maxwell-Poisson Distribution
Catalyst 项目:使用 Conway-Maxwell-Poisson 分布对计数数据进行建模
  • 批准号:
    1700235
  • 财政年份:
    2017
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了