Many-sided Research of Foliations
叶状结构的多方面研究
基本信息
- 批准号:10640053
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to study foliations from many sided points of view.The head investigator (NISHIMORI Toshiyuki) had been studying the qualitative theory of similarity pseudogroup in order to develop the qualitative theory of foliations of higher codimension. The main theme was to find a higher codimensional analogy of classical theorems in the qualitative theory of codimension-one foliations, and proved that there is a fixed point of a contraction in the closure of each orbits with bubbles in each Sacksteder system. In this research, the aim of the head investigator was to find the condition under which orbits with bubbles appear. As a results, it was proved that, for each strongly semiproper orbit, it is with bubbles if and only if it has a bounded multiplicative function. As a somewhat generalized version of this result, it was proved that, for each strongly semiproper orbit, it is almost with bubbles if and only if it has a bounded almost multiplicative function. The point of the proof was each strongly semiproper orbit has a non-empty open territory.The investigator SUWA tatsuo studied the residues of singular holomorphic foliations and obtained some results. The investigators took totally geodesic foliations on manifolds with Lorentzian metric as the theme. They studied fundamental examples of timelike leaves, spacelike leaves and lightlike leaves and some results.
本研究的目的是从多个角度研究叶理。首席研究员(西森俊之)一直在研究相似伪群的定性理论,以发展更高余维的叶理的定性理论。主要的主题是找到一个更高的余维类比的经典定理的定性理论的余维一叶理,并证明有一个不动点的收缩封闭的每个轨道的泡沫在每个Sacksteder系统。在这项研究中,首席研究员的目的是找到气泡轨道出现的条件。结果证明了,对于每个强半真轨道,它是有泡的当且仅当它有一个有界乘法函数。作为这个结果的某种推广,证明了对于每个强半真轨道,它几乎有泡当且仅当它有一个有界的几乎乘法函数。证明的要点是每个强半真轨道都有一个非空的开域。研究者SUWA Tatsuo研究了奇异全纯叶理的剩余,得到了一些结果。研究者们以洛伦兹度量为主题,研究流形上的全测地叶理。他们研究了类时叶、类空叶和类光叶的基本例子和一些结果。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suwa, Tatsuo: "Generalization of variations and Baum-Bott residues for holomorphic foliations on singular varieties"Intern. J. of Math.. 10. 367-384 (1999)
Suwa, Tatsuo:“奇异品种全纯叶状结构的变异和 Baum-Bott 残基的概括”实习生。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Suwa,Jatsuo: "Dual class of a suovariety"Tokyo J.Math.. 23. 51-68 (2000)
诹访Jatsuo:“多品种的双类”Tokyo J.Math.. 23. 51-68 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Brasselet, J.-P.: "Nash residues of singular holomorphic foliations"Asian J.Math.. 14. 37-50 (2000)
Brasselet, J.-P.:“奇异全纯叶的纳什残基”亚洲 J.Math.. 14. 37-50 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Suwa, Tatsuo: "Dual class of a subvariety"Tokyo J.Math.. 23. 51-68 (2000)
诹访辰夫:“亚品种的双类”Tokyo J.Math.. 23. 51-68 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Suwa, Tatsuo: "Milnor numbers and classes of local complete intersections"Proc. Japan Acad.. 75. 179-183 (1999)
Suwa,Tatsuo:“局部完整交叉路口的米尔诺数量和类别”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIMORI Toshiyuki其他文献
Practical Guide for Teaching Assistant.
助教实用指南。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
OGASAWARA Masaaki;NISHIMORI Toshiyuki;SENAHA Eijun - 通讯作者:
SENAHA Eijun
NISHIMORI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIMORI Toshiyuki', 18)}}的其他基金
Research on preparing future faculty for graduate students of science
培养科学研究生未来师资的研究
- 批准号:
21300285 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research and development of models of the teaching assistants for basic science classes in the universities
高校基础科学课助教模式的研究与开发
- 批准号:
18300259 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foliation Theory
叶状结构理论
- 批准号:
07640081 - 财政年份:1995
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Teichmüller理论与动力系统
- 批准号:11026124
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于网格法及Foliation条件机理的非线性向量场高维流形计算研究
- 批准号:60872159
- 批准年份:2008
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
CAREER: Pathways of Microplastics Creation: Multi-physics Study of Macroplastic Fragmentation, Foliation, and Fibration
职业:微塑料的产生途径:大塑料破碎、叶状和纤维化的多物理研究
- 批准号:
2245155 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
CAREER: Pathways of Microplastics Creation: Multi-physics Study of Macroplastic Fragmentation, Foliation, and Fibration
职业:微塑料的产生途径:大塑料破碎、叶状和纤维化的多物理研究
- 批准号:
2145137 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Effet de la défoliation par la livrée sur la faune du sol
太阳神兽落叶效应
- 批准号:
549618-2020 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
University Undergraduate Student Research Awards
The Symplectic Foliation of the Moduli Space of Magnetic Monopoles
磁单极子模空间的辛叶状结构
- 批准号:
552767-2020 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Effet de la défoliation par la livrée sur la biomasse microbienne du sol en forêt mixte
太阳和森林混合生物质微生物的落叶效应
- 批准号:
549619-2020 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
University Undergraduate Student Research Awards
Likelihood analysis for cluster point processes and elucidation of geometric structure of TextilePlot
聚类点过程的似然分析和 TextilePlot 几何结构的阐明
- 批准号:
19K11865 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
- 批准号:
17K05247 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Foliation Theory in Algebraic Geometry
代数几何中的叶层理论
- 批准号:
1339299 - 财政年份:2013
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant