Foliation Theory
叶状结构理论
基本信息
- 批准号:07640081
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to investigate the structures and properties of foliations in a broad sense.Head Investigator T.Nishimori has been studying the qualitative theory of similarity pseudogroups in order to extend the qualitative theory of codimension one foliations for foliations of higher codimension. To prepare a firm base for the trial, he gave a detailed proof for Hector's Uniform Convergence Theorem in an extended form of class C^<1+Lipschitz> category.Investigator T.Suwa extended a theorem of Baum and Bott, connecting the residue of singular holomorphic foliations and their topological invariants, to open manifolds, and extended one of his own theorems to singular varieties of higher dimension. Furthermore, by introducing Nash residue, he gave a partial answer to the rationality Conjecture of Baum and Bott.Invesigator I.Nakai gave a geometric interpretation of the curvature form in terms of fake billiard and proved that a weakly associative n-web is associative if Chern connections of triples of the members are not flat, and then the foliations are defined by members of a pencil (projective linear family of dim 1) of 1-forms. This results completed the classification of weakly associative 4-webs initiated by Poincare, Mayrhofer and Reidemeister for the flat case.Investigator H.Minakawa constructed exceptional homomorphisms of the fundamental group of a closed orientable surface to the diffeomorphism group of a circle whose Euler class satisfies the equality bounding Ghys Inequality (arising from Milnor-Wood Inequality). Furthermore he classified exotic circles in the piecewise liniear homeomorphism group of a circle.
本研究的目的是从广义上研究叶理的结构和性质,首席研究员T.Nishimori一直在研究相似伪群的定性理论,以便将余维1叶理的定性理论推广到更高余维的叶理。为了给试验打下坚实的基础,他在C^<1+Lipschitz>类范畴的推广形式中详细证明了Hector的一致收敛定理。研究者T.Suwa将Baum和Bott的一个定理推广到开流形,将奇异全纯叶理的剩余与它们的拓扑不变量联系起来,并将他自己的一个定理推广到高维奇异簇。此外,他还通过引入Nash剩余部分地回答了Baum和Bott的合理性猜想。Investigator I.Nakai用假台球的形式给出了曲率形式的几何解释,并证明了弱结合n-网是结合的,如果其成员的三元组的Chern联络不是平坦的,然后由1-形式的束(dim 1的投影线性族)的成员定义叶理。这一结果完成了Poincare,Mayrhofer和Reidemeister对平面弱结合4-网的分类。研究者H.Minakawa构造了可定向闭曲面的基本群到圆的同态群的例外同态,该圆的Euler类满足等式边界Ghys不等式(源于Milnor-Wood不等式)。此外,他分类奇异圈分段线性同胚群的一个圈。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Daniel Lehmann: "Residues of holomorphic vector fields relative to singular invariant subvarieties" Journal of Differential Geometry. 41. 165-192 (1995)
Daniel Lehmann:“相对于奇异不变子类型的全纯向量场的残差”微分几何杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Minakawa: "Exotic circles of PL_+ (S^1)" Hokkaido Mathematical Journal. 24. 567-573 (1995)
Hiroyuki Minakawa:“PL_(S^1)的奇异圈”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Minakawa: "Exotic circles of PL_+(S^1)" Hokkaido Mathematical Journal. 24. 567-573 (1995)
Hiroyuki Minakawa:“PL_(S^1)的奇异圈”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiyuki Nishimori: "Some remarks in a qualitative theory of similarity pseudogroups" Hokkaido Methematical Journal. 24. 161-177 (1995)
Toshiyuki Nishimori:“相似伪群定性理论中的一些评论”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiyuki Nishimori: "Some remarks in a qualitative theory of similavity pseudogroups" Hokkaido Mathematical Journal. 24. 161-177 (1995)
Toshiyuki Nishimori:“相似性伪群定性理论中的一些评论”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIMORI Toshiyuki其他文献
Practical Guide for Teaching Assistant.
助教实用指南。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
OGASAWARA Masaaki;NISHIMORI Toshiyuki;SENAHA Eijun - 通讯作者:
SENAHA Eijun
NISHIMORI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIMORI Toshiyuki', 18)}}的其他基金
Research on preparing future faculty for graduate students of science
培养科学研究生未来师资的研究
- 批准号:
21300285 - 财政年份:2009
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research and development of models of the teaching assistants for basic science classes in the universities
高校基础科学课助教模式的研究与开发
- 批准号:
18300259 - 财政年份:2006
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Many-sided Research of Foliations
叶状结构的多方面研究
- 批准号:
10640053 - 财政年份:1998
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A new departure for qualitative theory of diamond-alpha difference equations
金刚石-α差分方程定性理论的新起点
- 批准号:
20K03668 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the qualitative theory and singularities of nonlinear partial differential equations
非线性偏微分方程的定性理论和奇点研究
- 批准号:
16H02151 - 财政年份:2016
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
- 批准号:
1514910 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
The Reconstruction of the Qualitative Theory of Perception
知觉定性理论的重建
- 批准号:
15K01980 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative theory of integral equation with delay and its application
时滞积分方程的定性理论及其应用
- 批准号:
26400174 - 财政年份:2014
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative theory of nonlinear partial differential equations and the analysis of singularitiesof
非线性偏微分方程的定性理论及其奇点分析
- 批准号:
23244017 - 财政年份:2011
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New development of the qualitative theory of nonlinear parabolic and elliptic equations
非线性抛物型和椭圆方程定性理论的新进展
- 批准号:
19204014 - 财政年份:2007
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Qualitative theory of differential equations describing dynamics of infectious disease
描述传染病动力学的微分方程定性理论
- 批准号:
18540122 - 财政年份:2006
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approach to the qualitative theory of functional equations by phase plane analysis
通过相平面分析探讨函数方程定性理论
- 批准号:
16540152 - 财政年份:2004
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative Theory on Oscillation of Solutions of Differential Equations
微分方程解振动的定性理论
- 批准号:
14540162 - 财政年份:2002
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)