Groupoid models for diagrams of groupoid correspondences and their C*-algebras
用于群群对应图及其 C* 代数的群群模型
基本信息
- 批准号:529300231
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Diagrams of groupoid correspondences describe a very general kind of dynamical systems, which contains self-similarities of groups and topological graphs as special cases. Self-Similar groups are important invariants of dynamical systems because they are purely algebraic and still may determine all of the dynamics on a Julia set. Graph C*-algebras are an important class of C*-algebras because many of their properties may be read off the underlying graphs. In order to handle more C*-algebras in similar ways, several generalisations of graph C*-algebras have been introduced in recent years. Diagrams of groupoid correspondences allow to treat all these classes of examples in a uniform way and also provide more examples that are similarly amenable to study, that is, they inherit many important properties of graph C*-algebras. Just as a group action may be encoded in a groupoid, which then gives rise to a C*-algebra, so a diagram of groupoid correspondences may be described in one groupoid, called its groupoid model. The existing constructions of this groupoid, however, only work under an extra assumption. A suitable generalisation to all diagrams is an important goal of this project. Alternatively, one may first translate a diagram of groupoid correspondences to the realm of C*-algebras or plain algebras and then map the diagram to a single C*-algebra or algebra, called its a covariance algebra. How is this covariance algebra related to the groupoid C*-algebra or Steinberg algebra of the groupoid model? This is the second central question in this proposal. It is known that these objects agree under some assumptions, but not always. Finally, we will investigate some important properties of groupoid models, which allow to decide, for instance, whether the groupoid model is simple, that is, its only quotients are the obvious ones.
广群对应图描述了一类非常普遍的动力系统,它包含了群和拓扑图的自相似性作为特例。 自相似群是动力系统的重要不变量,因为它们是纯代数的,并且仍然可以确定Julia集上的所有动力学。 图C ~*-代数是C ~*-代数的一个重要类别,因为它们的许多性质可以从底层图中读出。 为了以类似的方式处理更多的C*-代数,近年来引入了图C*-代数的几种推广。 广群对应图允许以统一的方式处理所有这些类的例子,并且还提供了更多类似的适合研究的例子,也就是说,它们继承了图C*-代数的许多重要性质。正如群作用可以被编码在群胚中,然后产生C*-代数,所以群胚对应的图可以在一个群胚中描述,称为它的群胚模型。 然而,这个广群的现有构造只在一个额外的假设下工作。 一个合适的概括到所有的图表是这个项目的一个重要目标。 或者,我们可以先将广群对应的图转换到C*-代数或普通代数的领域,然后将图映射到单个C*-代数或代数,称为协方差代数。 这个协方差代数与广群模型的广群C*-代数或Steinberg代数有什么关系? 这是本提案的第二个核心问题。 已知这些对象在某些假设下一致,但不总是一致。最后,我们将研究群胚模型的一些重要性质,例如,这些性质可以决定群胚模型是否简单,也就是说,它的唯一等价物是明显的等价物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ralf Meyer其他文献
Professor Dr. Ralf Meyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ralf Meyer', 18)}}的其他基金
Classification of non-simple purely infinite C*-algebras
非简单纯无限 C* 代数的分类
- 批准号:
270818892 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Actions of 2-groupoids on C*-algebras
2-群形对 C*-代数的作用
- 批准号:
128675010 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
- 批准号:
2608661 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant