REPRESENTATION THEORY AND COMBINATORICS AND RELATED TOPICS

表示理论和组合学及相关主题

基本信息

  • 批准号:
    11640044
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

Koike constructed all the irreducible representations of the Spin groups in the tensor spaces of the natural representations of the orthogonal groups and the fundamental Spin representation. This construction is a natural extension of the argument which is developed by H.Weyl in his famous book "The Classical Groups" and makes up the missing cases. Namely Koike considers the centralizer algebras of the Spin groups in the above tensor spaces (These algebras are natural analogs of the symmetric groups and Brauer's centralizer algebras in the classical cases.) and gives the explicit bases of the above algebras which are parameterized by the "extended Brauer diagrams". Koike also defines the subspaces of the above tensor spaces on which the symmetric group and the Spin group acts as the dual pair.In collaborated papers, Taniguchi extends the notion of a kind of the Molien series (it is a rational polynomial in one variable q.) to all the finite reflection groups, which was introduced by Kawanaka Noriaki (Osaka University) in case of the symmetric groups. Taniguchi and his collaborators give explicit formulas of those rational polynomials and reveal connections of the two-sided cells of the Iwahori Hecke algebras and those polynomials.Yamaguchi shows the representational background of the classical result of I.Schur which gives the characters of the irreducible projective representations of the symmetric groups. Namely based on Sergeev's duality of the twisted groups algebras of the hyperoctahedral groups and the Lie superalgebras, Yamaguchi defines immersions of the twisted groups algebras of the symmetric groups into the above twisted groups algebras and gives the subspaces, on which the twisted groups algebras of the symmetric groups and the Lie superalgebras act as the dual pair.
小池构建了所有的不可约表示的自旋群在张量空间的自然表示的正交群和基本的自旋表示。这种结构是H.Weyl在其著名著作《古典群》中提出的论点的自然延伸,并弥补了缺失的案例。即小池认为中心化代数的自旋群在上述张量空间(这些代数是自然类似的对称群和布劳尔的中心化代数在经典的情况下。并给出了由“扩展Brauer图”参数化的上述代数的显式基。小池还定义了上述张量空间的子空间,对称群和自旋群在其上充当对偶对。在合作论文中,谷口扩展了一种莫里安级数的概念(它是一个变量q的有理多项式)。Kawanaka Noriaki(大坂大学)在对称群的情况下引入的所有有限反射群。Taniguchi和他的合作者给出了这些有理多项式的显式公式,揭示了Iwahori Hecke代数的双边胞与这些多项式的联系,Yamaguchi给出了Schur给出对称群的不可约射影表示的特征的经典结果的代表性背景.即基于超八面体群的扭群代数与李超代数的Sergeev对偶,Yamaguchi定义了对称群的扭群代数浸入到上述扭群代数中,并给出了对称群的扭群代数与李超代数作为对偶对的子空间.

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GYOJA Akihiko, NISHIYAMA Kyo, ^* TANIGUCHI Kenji: "Invariants for Representations of Weyl Groups, Two-sided Cells, and Modular Representations of Iwahori-Hecke Algebras"Advanced Studies in Pure Math.. 28. 103-112 (2001)
GYOJA Akihiko、NISHIYAMA Kyo、^* TANIGUCHI Kenji:“Weyl 群表示的不变量、两侧单元和 Iwahori-Hecke 代数的模表示”纯数学高级研究.. 28. 103-112 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
谷口健二(共著): "Bemstein degree and associated cycles of Harish-Chandra modules-Hermitian Symmetric Case-"Asterisque(印刷中).
Kenji Taniguchi(合著者):“Bemstein 度和 Harish-Chandra 模块的相关循环 - 埃尔米特对称案例 -”Asterisque(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
TANIGUCHI Kenji: "Differential Operators that Commute with the r^<-2>-type Hamiltonian"Calogero-Moser-Sutherland Models. 451-459 (2000)
TANIGUCHI Kenji:“与 r^<-2> 型哈密顿量交换的微分算子”Calogero-Moser-Sutherland 模型。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
YAMAGUCHI Manabu: "A Duality of the Twisted Group Algebra of the Symmetric Group and a Lie Superalgebra"Journal of Algebra. 222. 301-327 (1999)
山口学:“对称群的扭曲群代数的对偶性和李超代数”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
山口学: "A Duality of a Twisted Group algebra of the hyperoctahedral group and the gueer Lie superalgebra"Advanced Studies in Pure Mathematics. 28. 401-422 (2001)
Manabu Yamaguchi:“超八面体群的扭曲群代数和盖尔李超代数的对偶性”纯数学高级研究 28. 401-422 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOIKE Kazuhiko其他文献

KOIKE Kazuhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOIKE Kazuhiko', 18)}}的其他基金

Evaluation of environmental factors and the risks controlling ocean productivities at the coast of Myanmar
缅甸沿海环境因素及控制海洋生产力风险评估
  • 批准号:
    26304031
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Expelled zooxanthellae from corals; possible source as symbionts to other corals
从珊瑚中排出虫黄藻;
  • 批准号:
    24570028
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of hepatitis C virus suicide therapy employing the viral protease
利用病毒蛋白酶开发丙型肝炎病毒自杀疗法
  • 批准号:
    23659393
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Zooxanthellal cycle in coral reefs
珊瑚礁中的虫黄藻循环
  • 批准号:
    21310011
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metabolic abnormalities in hepatitis C and its impact on the progression of liver disease
丙型肝炎的代谢异常及其对肝病进展的影响
  • 批准号:
    20390204
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hepatitis C as a Metabolic Disease : Pathogenesis for liver cancer and lifestyle-related diseases
丙型肝炎作为一种代谢性疾病:肝癌和生活方式相关疾病的发病机制
  • 批准号:
    18390214
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on representation theory of the classical groups and their related combinatorics
经典群表示论及其相关组合学研究
  • 批准号:
    18540046
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional abnormality in the mitochondria and pathogenesis of chronic hepatitis C: relation to hepatocellular carcinoma
线粒体功能异常和慢性丙型肝炎的发病机制:与肝细胞癌的关系
  • 批准号:
    15390226
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation Theory, Combinatorics and Related Topics
表示论、组合学及相关主题
  • 批准号:
    14540041
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the mechanism of hepatocarcinogenesis in hepatitis C viral infection
丙型肝炎病毒感染致肝癌机制研究
  • 批准号:
    13214018
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
  • 批准号:
    23K03037
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Geometry of Conjugacy and K-Theory in Affine Weyl Groups
RUI:仿射外尔群中的共轭几何和 K 理论
  • 批准号:
    2202017
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Centralisers, fixed sets and extended quotients for Weyl groups with applications to equivariant K-theory
Weyl 群的集中器、固定集和扩展商及其在等变 K 理论中的应用
  • 批准号:
    2770079
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Studentship
Families of irreducible characters of Weyl groups
外尔群不可约特征族
  • 批准号:
    398960-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Families of irreducible characters of Weyl groups
外尔群不可约特征族
  • 批准号:
    398976-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Research on geometry related to Weyl groups and root systems
与Weyl群和根系相关的几何学研究
  • 批准号:
    20540066
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heisenberg-Weyl Groups, Sequences, and Codes
海森堡-韦尔群、序列和代码
  • 批准号:
    0701226
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Invariants of the Weyl groups of exceptional Lie groups and their applications
异常李群的Weyl群的不变量及其应用
  • 批准号:
    18540106
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Actions of semisimple groups and Weyl groups and research on representations
半单群和Weyl群的作用及表示研究
  • 批准号:
    17540013
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Combinatorics of Affine Algebras and Weyl Groups
仿射代数和 Weyl 群的组合
  • 批准号:
    0100918
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了