Almost orthogonality in harmonic analysis and its application
调和分析中的近似正交及其应用
基本信息
- 批准号:11640149
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we studied the analysis of several operators by means of functions which are localized in phase space. First, we got a generalization of Calderon-Vaillancourt's theorem about the L^2 boundedness of pseudodifferential operators by means of Gabor frames. Second, we proved the descrete dyadic Carleson's inequality by using Bellman function method. As an application we gave alternate proofs of weighted norm inequalities for fractional maximal operators and fractional integral operators, Third, we got a generalization of Lieb-Thirring inequality about the moments of negative eigenvalues of the Schrodinger operator with negative potential. We used Frazier-Jawerth's ψ-transform. Our result is applicable to higher order degenerate elliptic partial differential operators. We expect that our result has an application to the problem of the stability of matter and the estimate of the Hausdorff dimension of the attractor of nonlinear equations. Four, we investigated the structure of regularity and the singular set of the weak solution of the nonlinear heat equaltion associated with a harmonic map from d-dimensional unitball B_1 (0) to (D+1)-dimensional Euclidean space. We showed that the minimizer of the harmonic map is smooth except closed set of at most (d-3)-Hausdorff dimension.
在这个项目中,我们研究了分析的几个运营商的功能,这是本地化的相空间。首先,我们利用Gabor框架得到了关于伪微分算子L^2有界性的Calderon-Vaillancourt定理的一个推广。其次,利用Bellman函数方法证明了离散并矢Carleson不等式。作为应用,给出了分数次极大算子和分数次积分算子的加权范数不等式的交替证明。第三,得到了关于具有负位势的Schrodinger算子的负特征值矩的Lieb-Thirring不等式的推广。我们使用了Frazier-Jawerth变换。我们的结果适用于高阶退化椭圆型偏微分算子。我们期望我们的结果对物质的稳定性和非线性方程吸引子的Hausdorff维数的估计问题有一定的应用。第四,研究了d维单位球B_1(0)到(D+1)维欧几里得空间调和映射所对应的非线性热方程弱解的正则性结构和奇异集。证明了调和映射的极小元除了至多(d-3)-Hausdorff维数的闭集外都是光滑的。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuya Tachizawa: "On weighted dyadic Carleson's inequalities"Journal of Inequalities and Applications. (to appear).
Kazuya Tachizawa:“论加权二进卡尔森不等式”不等式与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
堀畑和弘: "Nonlinear Fefferman-Phangの不等式とGinzburg-landau systemへの応用"京都大学数理解析研究所講究録. 1162. 91-98 (2000)
Kazuhiro Horihata:“非线性 Fefferman-Phang 不等式及其在 Ginzburg-landau 系统中的应用”京都大学数学科学研究所 Kokyuroku。1162. 91-98 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Horihata: "Nonlinear Fefferman-Phong's inequality and its application to Ginzburg-Landau system"Suurikaiseki kenkyuujyo kokyuroku. 1162. 91-98 (2000)
Kazuhiro Horihata:“非线性 Fefferman-Phong 不等式及其在 Ginzburg-Landau 系统中的应用”Suurikaiseki kenkyuujyo kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuya Tachizawa: "A generalization of Calderon-Vaillancourts's theorem"Suurikaiseki kenkyuujyo kokyuroku. 1102. 64-75 (1999)
Kazuya Tachizawa:“Calderon-Vaillancourts 定理的推广”Suurikaiseki kenkyuujyo kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Horihata: "The evolution of harmonic maps."Tohoku Mathematical Publications. 11. 1-111 (1999)
Kazuhiro Horihata:“调和映射的演变。”东北数学出版物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TACHIZAWA Kazuya其他文献
TACHIZAWA Kazuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TACHIZAWA Kazuya', 18)}}的其他基金
Reseach on multilinear harmonic analysis and its applications
多线性谐波分析及其应用研究
- 批准号:
20540149 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A characterization of weighted Sobolev spaces and its applications
加权Sobolev空间的表征及其应用
- 批准号:
16540133 - 财政年份:2004
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the multi-linear harmonic analysis
多线性谐波分析研究
- 批准号:
13640147 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study of analytic pseudodifferential operators with various bounds
具有不同界限的解析伪微分算子的研究
- 批准号:
18K03316 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pseudodifferential Operators and Geometric Analysis
伪微分算子和几何分析
- 批准号:
23340033 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pseudodifferential operators and time-frequency analysis
伪微分算子和时频分析
- 批准号:
21740097 - 财政年份:2009
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Conference: Motives, Quantum Field Theory and Pseudodifferential Operators
会议:动机、量子场论和伪微分算子
- 批准号:
0753038 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Pseudodifferential Operators and Geometric Analysis
伪微分算子和几何分析
- 批准号:
20540151 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elastic wavefield propagation and inversion using pseudodifferential operators
使用伪微分算子的弹性波场传播和反演
- 批准号:
217032-1999 - 财政年份:2002
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Elastic wavefield propagation and inversion using pseudodifferential operators
使用伪微分算子的弹性波场传播和反演
- 批准号:
217032-1999 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Elastic wavefield propagation and inversion using pseudodifferential operators
使用伪微分算子的弹性波场传播和反演
- 批准号:
217032-1999 - 财政年份:2000
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Elastic wavefield propagation and inversion using pseudodifferential operators
使用伪微分算子的弹性波场传播和反演
- 批准号:
217032-1999 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Weyl quantization and an index theorem for pseudodifferential operators
伪微分算子的 Weyl 量化和指数定理
- 批准号:
09640231 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)