Oscillatory properties of solutions of higher order differential equations

高阶微分方程解的振荡特性

基本信息

  • 批准号:
    11640170
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

The aim of this research is to investigate the oscillatory properties of solutions of higher-order (including second-order) ordinary differential equations of the Emden-Fowler type, and to investigate the oscillatory properties of solutions of elliptic differential equations on the base of the results for ordinary differential equations.The new results and knowledge obtained in the two years are as follows :1. For the second-order half-linear ordinary differential equations, a generalization and an analogue of the Sturm-Liouville linear regular eigenvalue problem are obtained.2. For the four-dimensional Emden-Fowler differential systems, a complete characterization for the existence of nonoscillatory solutions with specific asymptotic properties as t→∞ is established, and a characterization for the nonexistence of nonoscillatory solutions is also obtained.3. For higher-order ordinary differential equations with general nonlinearities, a characterization for the existence of nonoscillatory solutions of the Kiguradze classes is established.4. For a singular eigenvalue value problem to higher-order linear ordinary differential equations, it is shown that there is a countable sequence of eigenvalues and that the n-th eigenfunction has exactly n zeros in an infinite interval under consideration.5. For the second-order quasilinear ordinary differential equations, the asymptotic forms of positive solutions are completely determined.6. For the second-order quasilinear elliptic differential equations, a sufficient condition for the oscillation of all solutions is established.7. For the two-dimensional semilinear elliptic differential systems of the Laplace type, an analogue of the Liouville theorem is established.
本研究的目的是研究Emden-Fowler型高阶(包括二阶)常微分方程解的振动性质,并在常微分方程结果的基础上研究椭圆型微分方程解的振动性质。在这两年中获得的新成果和新知识如下:1。对于二阶半线性常微分方程,得到了Sturm-Liouville线性正则特征值问题的一种推广和模拟。对于四维Emden-Fowler微分系统,建立了t→∞时具有特定渐近性质的非振荡解的存在性的完整刻画,并得到了非振荡解的不存在性的一个刻画。3 .对于具有一般非线性的高阶常微分方程,建立了Kiguradze类非振荡解存在性的一个刻画。对于一类高阶线性常微分方程的奇异特征值问题,证明了存在一个可数的特征值序列,并且在考虑的无限区间内,第n个特征函数恰好有n个零。对于二阶拟线性常微分方程,完全确定了正解的渐近形式。对于二阶拟线性椭圆型微分方程,建立了其所有解振动的充分条件。对于Laplace型二维半线性椭圆型微分系统,建立了一个类似于Liouville定理的方法。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manabu Naito and Kimihiko Yano: "Positive solutions of higher order ordinary differential equations with general nonlinearities"Journal of Mathematical Analysis and Applications. 250-1. 27-48 (2000)
Manabu Naito 和 Kimihiko Yano:“具有一般非线性的高阶常微分方程的正解”数学分析与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ken-ichi Kamo and Hirovuki Usami: "Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity"Hiroshima Mathematical Journal. (to appear).
Ken-ichi Kamo 和 Hirovuki Usami:“具有次齐性的二阶拟线性常微分方程正解的渐近形式”广岛数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kusano Takasi,Manabu Naito and Wu Fentao: "On the oscillation of solutions of 4-dimensional Emden-Fowler differential systems"Advances in Mathematical Sciences and Applications. 11・2(掲載決定). (2001)
草野高西、内藤学、吴奋涛:“论4维Emden-Fowler微分系统解的振荡”数学科学与应用进展11・2(2001年出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshiaki Kusahara and Hiroyuki Usami: "A barrier method for quasilinear ordinary differential equations of the curvature type"Czechoslovak Mathematical Journal. 50・1. 185-196 (2000)
Toshiaki Kusahara 和 Hiroyuki Usami:“曲率型拟线性常微分方程的障碍方法”捷克斯洛伐克数学杂志 50・1(2000 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Naito & H.Usami: "Oscillation criteria for quasilinear elliptic equations"Nonlinear Anal.. (印刷中).
Y.Naito 和 H.Usami:“拟线性椭圆方程的振荡准则”非线性分析..(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Manabu其他文献

NAITO Manabu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Manabu', 18)}}的其他基金

Oscillation theory and singular boundary value problems for higher-order ordinary differential equations
高阶常微分方程的振动理论和奇异边值问题
  • 批准号:
    19540188
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Boundary value problems for higher-order nonlinear ordinary differential equations
高阶非线性常微分方程的边值问题
  • 批准号:
    15340048
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the number of zeros of solutions to higher-order nonlinear differential equations
高阶非线性微分方程解的零点个数研究
  • 批准号:
    13640178
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了