Study on the number of zeros of solutions to higher-order nonlinear differential equations
高阶非线性微分方程解的零点个数研究
基本信息
- 批准号:13640178
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research is to study the number of zeros and the distribution of zeros of solutions of higher-order ordinary differential equations with Emden-Fowler type nonlinearity, and to discuss the oscillatory properties of solutions of higher-order elliptic differential equations on the base of the results for ordinary differential equations.The new results and knowledge obtained in the two years are as follows :1. For a singular eigenvalue problem to the linear and sublinear higher-order ordinary differential equations on an infinite interval [a, +∞), it is shown that there is a countable sequence of eigenvalues and that the n-th eigenfunction has exactly n zeros.2. For a regular eigenvalue problem to the sublinear higher-order ordinary differential equations on a finite interval, it is shown that there is a countable sequence of eigenvalues and that the n-th eigenfunction has exactly n zeros.3. For the second-order half-linear ordinary differential equations, it is shown that the number of zeros of specific nonoscillatory solutions changes one by one as a parameter varies.4. For the second-order half-linear ordinary differential equations, a generalization and an analogue of the Sturm-Liouville linear regular eigenvalue problem are obtained.5. For the four-dimensional Emden-Fowler differential systems and the fourth-order quasilinear differential equations of Emden-Fowler type, a necessary and sufficinet condition for the existence of nonoscillatory solutions with specific asymptotic properties as t →∞ is established, and a sufficient condition for oscillation of all solutions is also obtained.6. For the two-dimensional semilinear elliptic differential systems of the Laplace type, an analogue of Liouville's theorem is established.7. For the fourth-order nonlinear elliptic differential equations including the poly-harmonic operator, it is shown that a duality between the existence and nonexistence in an interior/exterior/entire the problems still holds.
本研究的目的是研究具有Emden-Fowler型非线性项的高阶常微分方程解的零点个数和零点分布,并在常微分方程结果的基础上讨论高阶椭圆型微分方程解的振动性,两年来取得的新成果和认识如下:1.对于无穷区间[a,+∞)上的线性和次线性高阶常微分方程的奇异特征值问题,证明了存在可数特征值序列,且第n个特征函数恰好有n个零点.对于有限区间上的次线性高阶常微分方程的正则特征值问题,证明了存在可数的特征值序列,且第n个特征函数恰好有n个零点.对于二阶半线性常微分方程,证明了特定非振动解的零点个数随着参数的变化而一一变化.对于二阶半线性常微分方程,得到了Sturm-Liouville线性正则特征值问题的一个推广和一个类比.对于四维Emden-Fowler微分系统和四阶拟线性Emden-Fowler型微分方程,建立了当t →∞时存在具有特定渐近性质的非振动解的充分必要条件,以及所有解振动的充分条件.对于二维拉普拉斯型半线性椭圆微分系统,建立了Liouville定理的一个类似定理.对于含多调和算子的四阶非线性椭圆型微分方程,证明了该问题在内部/外部/整体上的存在性与不存在性之间的对偶性仍然成立.
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masatsugu Mizukami, Manabu Naito and Hiroyuki Usami: "Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations"Hiroshima Mathematical Journal. Vol.32, No.1. 51-78 (2002)
Masatsugu Mizukami、Manabu Naito 和 Hiroyuki Usami:“一类二阶拟线性常微分方程解的渐近行为”广岛数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Manabu Naito: "On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations"Monatshefte fur Mathematik. (To appear).
Manabu Naito:“关于高阶线性常微分方程非振荡解的零点数量”Monatshefte Fur Mathematik。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hashimoto Takahiro, Ishiwata Michinori, Otani Mitsuharu: "Quasilinear elliptic equations in infinite tube-shaped domains"Advances in Mathematical Sciences and Applications. 11. 483-503 (2001)
Hashimoto Takahiro、Ishiwata Michinori、Otani Mitsuharu:“无限管状域中的拟线性椭圆方程”数学科学与应用进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Magnanini, Shigeru, Sakaguchi: "Stationary critical points of the heat flow in the plane"Journal d'Analyse Mathematique. 88. 383-396 (2002)
R.Magnanini、Shigeru、Sakaguchi:“平面内热流的静止临界点”Journal dAnalyse Mathematique。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kusano Takasi, Manabu Naito, Wu Fentao: "On the oscillation of solutions of 4-dimensional Emden-Fowler differential systems"Advances in Mathematical Sciences and Applications. 11・2. (2001)
草野高西、内藤学、吴奋涛:“关于4维Emden-Fowler微分系统解的振荡”数学科学与应用进展11・2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAITO Manabu其他文献
NAITO Manabu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAITO Manabu', 18)}}的其他基金
Oscillation theory and singular boundary value problems for higher-order ordinary differential equations
高阶常微分方程的振动理论和奇异边值问题
- 批准号:
19540188 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundary value problems for higher-order nonlinear ordinary differential equations
高阶非线性常微分方程的边值问题
- 批准号:
15340048 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Oscillatory properties of solutions of higher order differential equations
高阶微分方程解的振荡特性
- 批准号:
11640170 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)