Boundary value problems for higher-order nonlinear ordinary differential equations

高阶非线性常微分方程的边值问题

基本信息

  • 批准号:
    15340048
  • 负责人:
  • 金额:
    $ 3.2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The aim of this research is to study the existence, the uniqueness, the number of zeros and the distribution of zeros of solutions of boundary value problems for higher-order ordinary differential equations, and to obtain the detailed information for the set of solutions of higher-order elliptic differential equations on the base of the results for ordinary differential equations.The new results are as follows :1.For a fourth-order or even-order quasilinear ordinary differential equation, necessary and sufficient conditions for the existence of a positive solution are obtained. For a 2-system of the second-order ordinary differential equations and a 2-system of the second-order elliptic equations, the existence of a positive solution is discussed.2.A degenerate elliptic equation with arbitrary nonlinearity is considered on exterior domain, and necessary and sufficient conditions for all solutions to be oscillatory are established. A degenerate elliptic equation is considered on strip-like domain, and the nonexistence of a positive solution is discussed.3.For an initial value problem for the heat equation, stationary isothermic surfaces and uniformly dense domains are discussed, and an interaction between degenerate diffusion and shape of domain is discussed.4.For a singular eigenvalue problem to a higher-order ordinary differential equation on an infinite interval, it is shown that there is a countable sequence of eigenfunctions having exactly n zeros.5.For a fourth-order nonlinear elliptic differential equation including the poly-harmonic operator, the existence results and nonexistence results are obtained.
本文的目的是研究高阶常微分方程边值问题解的存在性、唯一性、零点个数和零点分布,并在常微分方程结果的基础上得到高阶椭圆型方程解集的详细信息,新的结果如下:1.对一类四阶或偶数阶拟线性常微分方程,给出了正解存在的充分必要条件。讨论了2-二阶常微分方程组和2-二阶椭圆型方程组正解的存在性。2.在外部区域上考虑了一类具有任意非线性项的退化椭圆型方程,建立了其所有解振动的充要条件。讨论了带状区域上退化椭圆型方程的正解的不存在性. 3.对于热方程的初值问题,讨论了定常等温面和一致稠密区域,并讨论了退化扩散与区域形状的相互作用. 4.对于无穷区间上高阶常微分方程的奇异特征值问题,证明了存在可数的具有n个零点的特征函数序列. 5.对于一类含多调和算子的四阶非线性椭圆型微分方程,得到了解的存在性和不存在性结果.

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonexistence of positive solutions of some quasilinear elliptic equations with singularity on the boundary in strip-like domains
带状域边界奇点拟线性椭圆方程不存在正解
Stationary isothermic surfaces and uniformly dense domains
静止等温面和均匀致密域
Stationary isotherimic surfaces and uniformly dense domains
静止等温面和均匀致密域
Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations
一些非线性四阶椭圆方程非平凡解的存在性与不存在性
Existence of positive solutions of higher-order quasilinear ordinary differential equations
高阶拟线性常微分方程正解的存在性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takasi Kusano;and Tomoyuki Tanigawa;Manabu Naito;Manabu Naito;Takasi Kusano;Manabu Naito;Kusano Takasi;Hiroyuki Usami;寺本智光;Hiroyuki Usami;Hiroyuki Usami;Tomomitsu Teramoto;Ken-ichi Kamo;J.Jaros;Manabu Naito
  • 通讯作者:
    Manabu Naito
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Manabu其他文献

NAITO Manabu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Manabu', 18)}}的其他基金

Oscillation theory and singular boundary value problems for higher-order ordinary differential equations
高阶常微分方程的振动理论和奇异边值问题
  • 批准号:
    19540188
  • 财政年份:
    2007
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the number of zeros of solutions to higher-order nonlinear differential equations
高阶非线性微分方程解的零点个数研究
  • 批准号:
    13640178
  • 财政年份:
    2001
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Oscillatory properties of solutions of higher order differential equations
高阶微分方程解的振荡特性
  • 批准号:
    11640170
  • 财政年份:
    1999
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了