Synthesis of Symmetrical Nonlinear-Circuits with Finite Group Representaion
有限群表示的对称非线性电路的综合
基本信息
- 批准号:11650383
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We considered possible combination of periodic solutions and their bifurcations of given nonlinear dynamical system for topologically classification. With symmetry point of view, corresponding finite group representations and some mathematical results are obtained. We would like to report and publish about these results after finishing preparation. Concretely we applied these mathematical results to neural networks and electric circuits. Firstly we reinvestigated symmetrically coupled BVP oscillators. The coupled oscillators can be chaotic under a reasonable assumption ; each oscillator has different rhythm. We clarified bifurcation diagrams in detail. All phenomena have been confirmed in laboratory experiments.Next, we investigated BVP oscillators synaptically coupled by an alpha-function to simulate delayed coupling system. Since generated periodic solutions can be differentiable, the Poincare mapping is well-defined. Thus bifurcation phenomena and chaos are numerically calculated. Even though the BVP osillator is introduced as a firing model of Hodgkin-Huxley dynamics, qualified analogy between this synaptically coupled system and HH equation have never treated before. We found out there exist similar bifurcation structures between them. Also possible periodic Solutions and non-periodic solutions are classified and enumerated by using finite group representations, then some synchronization phenomena and the state transition of bursting responses are clarified.We are also developing intensively some mathematical tools for interrupted dynamical systems since we found out that the switching point of the periodic orbit can be transferred into one of periodic point of the Poincare mapping.
考虑了给定的非线性动力系统的周期解及其分支的可能组合,并进行了拓扑分类。利用对称性的观点,得到了相应的有限群表示和一些数学结果。准备完毕后,我们将报告并发布这些结果。具体地说,我们将这些数学结果应用于神经网络和电路。首先,我们重新研究对称耦合BVP振子。在合理的假设下,耦合振子可以是混沌的,每个振子有不同的节奏。我们详细阐明了分叉图。这些现象都在实验室实验中得到了证实。接下来,我们研究了用α函数突触耦合的BVP振子来模拟延迟耦合系统。由于生成的周期解可以是可微的,所以Poincare映射是明确定义的。从而对分岔现象和混沌现象进行了数值计算。尽管BVP振荡器是作为Hodgkin-Huxley动力学的一个放电模型引入的,但这个突触耦合系统与HH方程之间的合格类比以前从未处理过。我们发现它们之间存在着相似的分叉结构。利用有限群表示对可能的周期解和非周期解进行了分类和计数,阐明了一些同步现象和突发响应的状态转移,并且由于发现周期轨道的切换点可以转化为Poincare映射的周期点,我们也在积极发展一些研究间断动力系统的数学工具。
项目成果
期刊论文数量(92)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ueta, G.Chen: "On synchronization and control of coupled Wilson-Cowan neural oscillators"International Journal of Bifurcation and Chaos. 13(印刷中). (2003)
T.Ueta,G.Chen:“耦合 Wilson-Cowan 神经振荡器的同步和控制”国际分叉与混沌杂志 13(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ueta: "Numerical Approaches to Bifurcation Analysis, Chaos and Bifurcaions in Circuits and Systems"Birkhauser (予定). 680 (2001)
T.Ueta:“电路和系统中分岔分析、混沌和分岔的数值方法”Birkhauser(计划)680 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中芳夫, 川上 博, 藤本憲市: "カオスを利用した倒立振子の振り上げ制御"日本機械学会論文集C編. 65. 178-184 (1999)
Yoshio Tanaka、Hiroshi Kawakami、Kenichi Fujimoto:“利用混沌控制倒立摆”,日本机械工程师学会汇刊,C 版 65. 178-184 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川上 博, 上田哲史, 吉永哲哉: "区分非線形系にみられる不連続応答の分岐とカオス制御"Journal of Signal Processing. 3. 363-371 (1999)
Hiroshi Kawakami、Tetsushi Ueda、Tetsuya Yoshinaga:“分段非线性系统中发现的不连续响应和混沌控制的分岔”信号处理杂志。3. 363-371 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Kitajima, T.Yoshinaga, K.Aihara, H.Kawakami: "Chaotic bursts and bifurcation in chaotic neural networks with ring struc-ture"International Journal of Bifurcation and Chaos. 11. 1631-1643 (2001)
H.Kitajima、T.Yoshinaga、K.Aihara、H.Kawakami:“环结构混沌神经网络中的混沌爆发和分叉”International Journal of Bifurcation and Chaos。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAKAMI Hiroshi其他文献
KAWAKAMI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAKAMI Hiroshi', 18)}}的其他基金
Quantitative analysis of motion and emotion of musicians and visualization of performance expression
音乐家动作和情感的定量分析以及表演表达的可视化
- 批准号:
17K02379 - 财政年份:2017
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fracture of oxide film for bonding with reduction of enviromental consumption
减少环境消耗的接合氧化膜断裂分析
- 批准号:
15K06464 - 财政年份:2015
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermoelectric properties of Bi-Te Nanowire-arrays for renewable energy using custom-made apparatus
使用定制设备研究可再生能源 Bi-Te 纳米线阵列的热电特性
- 批准号:
25600032 - 财政年份:2013
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RBM5 plays important roles in the post-transcriptional regulation of mRNAs that are involved in the metabolism of chemotherapeutic reagents.
RBM5 在参与化疗试剂代谢的 mRNA 转录后调节中发挥重要作用。
- 批准号:
23591007 - 财政年份:2011
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biochemical properties of a multifunctional protein in milk and its application
牛奶中多功能蛋白的生化特性及其应用
- 批准号:
21580153 - 财政年份:2009
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Approach to Universal Design from System Science
从系统科学到通用设计的方法
- 批准号:
15560219 - 财政年份:2003
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Techniques of Slope Stability through an introduction of suction
引入吸力的边坡稳定技术研究
- 批准号:
08555121 - 财政年份:1996
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Methods of Analysis of Nonlinear Circuits with Symmetrical Structure
对称结构非线性电路分析方法研究
- 批准号:
08650431 - 财政年份:1996
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Coupled Oscillator Networks and Application to Chemical Reaction Oscillations and Biological Rhythms
耦合振荡器网络分析及其在化学反应振荡和生物节律中的应用
- 批准号:
03805028 - 财政年份:1991
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Research on the Prediction of Stability for the Excavated Slopes by Using Monitoring Systems
利用监测系统预测开挖边坡稳定性的研究
- 批准号:
03650400 - 财政年份:1991
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Research Grant