Nonlinear behavior of a many-body one-dimensional plasma sheet model and its transport phenomena
多体一维等离子体片模型的非线性行为及其输运现象
基本信息
- 批准号:11837018
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A one-dimenslonal plasma sheet model, which consists of negatively charged sheets in a uniformly distributed positive charges, is equivalent to a system of harmonic oscillators around equilibrium positions equally separated from each other, neighboring oscillators colliding elastically. Therefore, if the motion of each sheet is described in terms of action and angle variables, the action variables are constants of motion and the motion is regular until collision of oscillators occurs. When collisionof neighboring pair of oscillators, their action variables undergo discontinuous jumps due to exchange of momenta between neighboring pair. Numerical calculation can be done by connecting analytical solutions before and after each collision. First, we investigated thermal conductivity of this system by imposing boundary condition of heat baths of different temperatures and calculate energyflow from one boundary to the other. The size dependence of the conductivity coefficient is normal as long as the system is at low temperature. However, at higher temperature, there is size-dependence of the coefficient, which is due to ballistic motion of sheets as observed in the phase space. Namely there are ballistic sheets(free particle motion) and trapped sheets in potential wells. The tendencyto Maxwell distribution of velocities is quick at lower temperature, where orbital instability is enhanced due to chaos. We succeeded to explain these behavior by the usage of escape rate formalism which implies that Green-Kubo formula works at least at low temperature. In order to under stand these observations, we are now developing a kinetic theory based up on action and angle variables for the evolution of distribution function of angle variables. We have also investigated effect of particle transport (diffusion) on non-linear chemical reaction, which may create spatial correlation under nonequilibrium conditions,
一个由正电荷均匀分布的负电荷片组成的一维等离子体片模型,相当于一个在平衡位置周围均匀分离的谐振子系统,相邻的谐振子进行弹性碰撞。因此,如果用作用变量和角度变量来描述每个薄片的运动,则作用变量是运动常数,运动是规则的,直到振子发生碰撞。当相邻振子对发生碰撞时,由于相邻振子对之间的动量交换,它们的作用变量发生不连续的跳跃。数值计算可以通过连接每次碰撞前后的解析解来完成。首先,我们通过施加不同温度的热浴边界条件来研究该系统的导热性,并计算了从一个边界到另一个边界的能量流。只要系统处于低温状态,电导率系数的尺寸依赖性是正常的。然而,在较高的温度下,由于在相空间中观察到薄片的弹道运动,该系数存在尺寸依赖性。也就是说,有弹道片(自由粒子运动)和势阱中的捕获片。在较低的温度下,轨道的不稳定性由于混沌而增强,速度向麦克斯韦分布的趋势很快。我们成功地用逃逸率公式解释了这些行为,这意味着Green-Kubo公式至少在低温下是有效的。为了理解这些观察结果,我们现在正在发展一个基于作用和角度变量的动力学理论,用于角度变量分布函数的演化。我们还研究了粒子输运(扩散)对非线性化学反应的影响,这可能在非平衡条件下产生空间相关性。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Junichi Wakou, Kazuo Kitahara: "Kinetic theory for spatial correlation in nonequilibrium reaction-diffusion systems"Physica A. 281. 318-322 (2000)
Junichi Wakou、Kazuo Kitahara:“非平衡反应扩散系统中空间关联的动力学理论”Physica A. 281. 318-322 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Wakou and K.Kitahara: "Kinetic Theory for Spatial Correlation in Nonequilibrium Reaction-Diffusion"Physica A. (印刷中). (2000)
J. Wakou 和 K. Kitahara:“非平衡反应扩散中空间相关的动力学理论”Physica A.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsusada Sano and Kazuo Kitahara: "Thermal conductivity in a chain of colliding harmonic oscillator revisited"Physical Review E. 64. 056111-1-9 (2001)
Mitsusada Sano 和 Kazuo Kitahara:“重访碰撞谐振子链中的热导率”物理评论 E. 64. 056111-1-9 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsusada Sano, Kazuo Kitahara: "Thermal conduction in a chain of colliding harmonic oscillators revisited"Physical Review E. 64. 056111-1-056111-9 (2001)
Mitsusada Sano、Kazuo Kitahara:“重温碰撞谐振子链中的热传导”物理评论 E. 64. 056111-1-056111-9 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kitahara,H.Osakabe,K.Mori and U.M.Titulaer: "The Effect of a Magnetic Field on the Recombination of a Radical Pair"J.Molecular Liquids. 86. 53-59 (2000)
K.Kitahara、H.Osakabe、K.Mori 和 U.M.Titulaer:“磁场对自由基对重组的影响”J.分子液体。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAHARA Kazuo其他文献
KITAHARA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAHARA Kazuo', 18)}}的其他基金
Nonequilibrium thermodynamics of multicomponent fluids
多组分流体的非平衡热力学
- 批准号:
09640458 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Correlation of Fluctuations and Formation of Dissipative Structures in Nonequilibrium Reaction Diffusion Systems and Hydrodynamic Systems
非平衡反应扩散系统和流体动力系统中涨落与耗散结构形成的空间相关性
- 批准号:
05640436 - 财政年份:1993
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
- 批准号:
2339644 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
- 批准号:
23K03274 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2349122 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Novel Thermal Transport Phenomena in Quantum Materials
量子材料中的新型热传输现象
- 批准号:
2317618 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Interfacial quantum transport phenomena in heterostructures of topological insulators
拓扑绝缘体异质结构中的界面量子输运现象
- 批准号:
22KJ0902 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Deep Learning for Understanding Multiscale Particle Transport Phenomena Inside Fuel Cells
用于理解燃料电池内部多尺度粒子传输现象的深度学习
- 批准号:
22KF0042 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Solid-liquid-vapor interfacial transport phenomena coupled with wetting/condensation/evaporation
固-液-汽界面传输现象与润湿/冷凝/蒸发相结合
- 批准号:
22H01416 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
- 批准号:
2200515 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Development of Thermal Contact Resistance Prediction Formula Considering Details of Heat Transport Phenomena in Solid-Solid Contact Surface
考虑固-固接触表面传热现象细节的热接触热阻预测公式的开发
- 批准号:
22K03949 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental Study on Transport Phenomena of Spatiotemporal Chaos Using Nematic Electroconvection
向列电对流时空混沌输运现象的实验研究
- 批准号:
22K03469 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)