Spatial Correlation of Fluctuations and Formation of Dissipative Structures in Nonequilibrium Reaction Diffusion Systems and Hydrodynamic Systems
非平衡反应扩散系统和流体动力系统中涨落与耗散结构形成的空间相关性
基本信息
- 批准号:05640436
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.We formulate nonequilibrium thermodynamics of multi-component fluids by generalizing entropy in order that entropy is a function of barycentric flow and diffusion flows. This generalization enables us to derive constitutive equation for the relaxation of diffusion flows in the presence of inertial effects.2.The macroscopic description of a system with chemical reactions predicts that if the detailed balance conditon is violated, then nonequilibrium spatial correlation between concentrations of reactants may appear. We made molecular dynamics simulations of such correlations in a model sysem of reactiing hard spheres. We indeed found the long range correlations, which was predicted by the hydrodynamic description. There is some deviation in a short distance due to kinetic effects.Starting from the Langevin equation a nonlinear evolution equation describing the mean square distance of initially close tagged particles in a turbulent medium is obtained. The initial-t^3 and intermediate exponential growth of the mean square distance subsist even under the presence of stable drift.
1.我们将熵推广到多组分流体的非平衡态热力学,使熵是重心流和扩散流的函数。这种推广使我们能够推导出存在惯性效应时扩散流松弛的本构方程。对化学反应体系的宏观描述预示,如果违反了详细的平衡条件,则反应物浓度之间可能出现非平衡空间相关性。我们在反应硬球的模型系统中对这种相关性进行了分子动力学模拟。我们确实发现了长期相关性,这是由流体力学描述所预测的。由于动力作用,在短距离内会有一些偏差。从朗之万方程出发,得到了描述湍流介质中初始接近标记粒子的均方距离的非线性演化方程。在稳定漂移的情况下,均方距离的初始-t^3和中间指数增长仍然存在。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kitahara: "Nonequilibrium Thermodynamics and Variational Principle" Dennetsu Kenkyu. 33. 30-36 (1994)
K.Kitahara:“非平衡热力学和变分原理”Dennetsu Kenkyu。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kitahara: Science of NonequilibriumSystems ; Statistical Mechanics of Relaxation Phenomena. Kodansha, 158 (1994)
K.Kitahara:非平衡系统科学;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kitahara: "Hierarchical Structures in Statistical Mechanics" Nihon Butsuri Gakkaishi. 50. 271-278 (1995)
K.Kitahara:“统计力学中的层次结构”Nihon Butsuri Gakkaishi。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J. Gorecki,北原和夫,吉川研一,花崎一郎: "Molecular dynamics simulation of nonequilibrium spatial correlations in a reaction diffusion system" Physica A. 211. 327-343 (1994)
J. Gorecki、Kazuo Kitahara、Kenichi Yoshikawa、Ichiro Hanasaki:“反应扩散系统中非平衡空间相关性的分子动力学模拟” Physica A. 211. 327-343 (1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAHARA Kazuo其他文献
KITAHARA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAHARA Kazuo', 18)}}的其他基金
Nonlinear behavior of a many-body one-dimensional plasma sheet model and its transport phenomena
多体一维等离子体片模型的非线性行为及其输运现象
- 批准号:
11837018 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonequilibrium thermodynamics of multicomponent fluids
多组分流体的非平衡热力学
- 批准号:
09640458 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fabrication of Ultra-Strong Glasses via Spatiotemporal Dissipative Structure of Singular Stress Field
利用奇异应力场时空耗散结构制造超强玻璃
- 批准号:
21K18837 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of new dissipative structure and exploration of general stability analysis method for symmetric hyperbolic system
新耗散结构的阐明及对称双曲系统一般稳定性分析方法的探索
- 批准号:
21K13818 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of non-equilibrium thermodynamics simulator applicable to life and social phenomena produced by dissipative structure
开发适用于耗散结构产生的生活和社会现象的非平衡热力学模拟器
- 批准号:
19K04896 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dissipative structure in granular segregation: cross-talk between rheology and interface dynamics
颗粒偏析中的耗散结构:流变学和界面动力学之间的串扰
- 批准号:
19K14614 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clarification of the mechanisms of rotation and dissipative structure in chiral liquid crystals by variational principle
利用变分原理阐明手性液晶的旋转和耗散结构机制
- 批准号:
18K13520 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Entropy dissipative structure and mathematical analysis for complex fluids
复杂流体的熵耗散结构与数学分析
- 批准号:
18H01131 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic profile of solutions for some partial differential equations with dissipative structure and its application
一些具有耗散结构的偏微分方程解的渐近廓线及其应用
- 批准号:
15K04958 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for the dissipative structure of the differential equations with relaxation and its application
松弛微分方程的耗散结构研究及其应用
- 批准号:
25800078 - 财政年份:2013
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Response of transfer and dissipative structure of turbulence to the microscale disturbances
湍流传递和耗散结构对微尺度扰动的响应
- 批准号:
19560168 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)