Nonequilibrium thermodynamics of multicomponent fluids
多组分流体的非平衡热力学
基本信息
- 批准号:09640458
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We obtained the general evolution equations for the density and mass flux of each component of a multicomponent fluid on the basis of conservation laws and irreversibility, which are required from the thermodynamic laws, as summarized in the Miyazaki-Kitahara-Bedeaux paper and in the book. The idea is that in a multicomponent fluid, internal energy is no more a conservative quantity, but the total energy including the kinetic energy of mass fluxes is conserved. Thus the Gibbs relation is generalized in terms of total energy density. Then the momentum densities ( mass flux densities) enter into the Gibbs relation. Then we derived linear irreversible thermodynamics in terms of intensive parameters, which appear in the generalized Gibbs relation. Furthermore, assuming the reversible part of the evolution equation has a symplectic property, which automatically satisfies the condition of no entropy production, we derived the reversiblepart of the evolution equation, which was not known for the mass flux of multicomponent fluids. Since our formulation is based on the entorpy concept, we generalized Boltzmann-Einstein principle to none quilibrium fluctuation of multicomponent fluids. Especially, thespatial correlation in nonequilibrium reaction-diffusion systems was studied in detail together with computer simulations. Finally, in the frame of linear hydrodynamics, we proved the thermodynamic results are correct from the microscopic Liouville formalism.
我们得到的一般演化方程的密度和质量通量的每一个组成部分的多组分流体的基础上的守恒定律和不可逆性,这是需要从热力学定律,总结在宫崎北原贝多纸和书。其思想是,在多组分流体中,内能不再是保守量,但总能量包括质量通量的动能是守恒的。因此,吉布斯关系是广义的总能量密度。然后动量密度(质量通量密度)进入吉布斯关系。在此基础上,我们导出了广义吉布斯关系式中的强度参数表示的线性不可逆热力学。此外,假设演化方程的可逆部分具有辛性质,自动满足无熵产生的条件,我们推导出了演化方程的可逆部分,这在多组分流体的质量通量中是未知的。由于我们的公式是基于内托概念,我们推广玻尔兹曼-爱因斯坦原理的非平衡多组分流体的波动。特别是对非平衡反应扩散系统中的空间相关性进行了详细的研究,并进行了计算机模拟。最后,在线性流体力学的框架下,从微观刘维尔形式证明了热力学结果的正确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Wakou,J.Gorecki and K.Kitahara,: "On the growth of nonequilibrium spatial correlations in a model reaction diffusion system: The effect of the diffusive flow relaxation" Acta Physica Polonica. B29. 1691-1704 (1998)
J.Wakou、J.Gorecki 和 K.Kitahara,:“关于模型反应扩散系统中非平衡空间相关性的增长:扩散流弛豫的影响”Acta Physica Polonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Miyazaki, K.Kitahara and D.Bedeaux: "Nonequilibrium thermodynamics of multi-component fluids" Proc.2nd Tohwa International Meeting "Statistical Physics" (Eds.M.Tokuyama and I.Oppenheim, World Scientific). 98-101 (1998)
K.Miyazaki、K.Kitahara 和 D.Bedeaux:“多组分流体的非平衡热力学”Proc.2nd Tohwa 国际会议“统计物理学”(Eds.M.Tokuyama 和 I.Oppenheim,世界科学)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Miyazaki, K.Kitahara and D.Bedeaux: "Nonequilibrium thermodynamics of multi-component fluids" Proc.2^<nd> Tohwa Int.Meeting“Statistical Physics"(World Sci.). 98-101 (1998)
K.Miyazaki、K.Kitahara 和 D.Bedeaux:“多组分流体的非平衡热力学”Proc.2^<nd> Tohwa Int.Meeting“统计物理学”(World Sci.) 98-101 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAHARA Kazuo其他文献
KITAHARA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAHARA Kazuo', 18)}}的其他基金
Nonlinear behavior of a many-body one-dimensional plasma sheet model and its transport phenomena
多体一维等离子体片模型的非线性行为及其输运现象
- 批准号:
11837018 - 财政年份:1999
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Correlation of Fluctuations and Formation of Dissipative Structures in Nonequilibrium Reaction Diffusion Systems and Hydrodynamic Systems
非平衡反应扩散系统和流体动力系统中涨落与耗散结构形成的空间相关性
- 批准号:
05640436 - 财政年份:1993
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Collaborative Research: RUI: Mathematical and empirical investigation of a reaction-diffusion system for spot formation in hybrid Mimulus
合作研究:RUI:混合酸浆中斑点形成反应扩散系统的数学和实证研究
- 批准号:
2031272 - 财政年份:2021
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Mathematical and empirical investigation of a reaction-diffusion system for spot formation in hybrid Mimulus
合作研究:RUI:混合酸浆中斑点形成反应扩散系统的数学和实证研究
- 批准号:
2031275 - 财政年份:2021
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Analysis of a global-in-time solution for reaction-diffusion system using verified numerical computation
使用经过验证的数值计算分析反应扩散系统的全局实时解
- 批准号:
18K13462 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pulse dynamics of a 3-component reaction-diffusion system in neighborhoods of several bifurcation points
多个分叉点附近三分量反应扩散系统的脉冲动力学
- 批准号:
15K04995 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of solutions to multi-component reaction diffusion system
多组分反应扩散系统溶液的控制
- 批准号:
26400214 - 财政年份:2014
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and implementation of programmable reaction diffusion system using nucleic acids
核酸可编程反应扩散系统的设计与实现
- 批准号:
26880002 - 财政年份:2014
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Model system to evaluate reaction-diffusion system using coat pattern-mutant rats
使用皮毛图案突变大鼠评估反应扩散系统的模型系统
- 批准号:
25640046 - 财政年份:2013
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Classification by the matrix representing the nonlinearity of the blowing up solutions for a reaction-diffusion system
按代表反应扩散系统吹胀溶液非线性的矩阵进行分类
- 批准号:
23740129 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and application ofthe theory of reaction-diffusion system approximation
反应扩散系统近似理论的发展与应用
- 批准号:
22740058 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Signal propagation on deformable patterns with reaction-diffusion system
使用反应扩散系统在可变形图案上传播信号
- 批准号:
20700213 - 财政年份:2008
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




