Random Number Generation on Parallel Computers
并行计算机上的随机数生成
基本信息
- 批准号:11680327
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The algebraic random number generator due to Niki, based on finite field arithmetics on GF(p^n) for a large prime p(2^<24>-3, for example) and an integer η around 12 or larger, is extended for use in parallel Monte Carlo computations, by dividing a period of length p^n-1 into many subsequences and each of which is associated with a parallel processOur main concerns in parallelization are (1)independence between extremely long sequences of random numbers ; (2)reproductivity of results from parallel Monte Carlo computations, in other words, providing the same seed corresponding to each of parallel processes which may be asynchronously initiated in varied order of time ; and (3)seeding to dynamically originated processes and recycling the remaining parts of sequences untouched by processes already killed.Independence (1)as well as equi-distribution is approved both by mathematical evaluation of errors and by a series of statistical tests on the results from a number of experiments in generation of parallel random numbers.We have proposed a procedure for reproduction (2)of the same results, in spite of undetermined property in time order of parallel computation, when the number of active processes is fixed and not so huge. It is remained for future work, however, to reduce the overheads for realization of reproductivity.If we limit our computations to those on a master-slave architecture system, there seems to be several methods for heavily dynamic problems (3)worth to try. But, for more promising pier-to pier type architecture, it is difficult to find a truly effective solution.
Niki提出的代数随机数发生器是基于GF(p ^n)上的有限域运算的,其中p是大素数(例如2 ^-3),η是12或更大的整数。通过将一个长度为p ^n-1的周期分成多个随机数,每个随机数都与一个并行处理相关联,将其推广到并行Monte Carlo计算中。<24>(2)来自并行蒙特卡罗计算的结果的再现性,换句话说,提供对应于可以以不同的时间顺序异步启动的每个并行过程的相同种子;以及(3)播种到动态发起的进程,并回收已被杀死的进程未触及的序列的剩余部分。分布是通过对误差的数学评价和对一些实验结果的一系列统计检验来证实的,并行随机数的产生.我们已经提出了一个过程,用于再现(2)相同的结果,尽管并行计算的时间顺序的不确定性,当活动进程的数量是固定的,不是那么大。然而,减少实现再现性的开销仍是未来的工作。如果我们将我们的计算限制在主从结构系统上,那么似乎有几种方法值得尝试。但是,对于更有前途的墩对墩式建筑,很难找到真正有效的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIKI Naoto其他文献
NIKI Naoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIKI Naoto', 18)}}的其他基金
Basic research on resampling of the bootstrap type
Bootstrap型重采样的基础研究
- 批准号:
24500350 - 财政年份:2012
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Inference on the Maximum Entropy Principle
最大熵原理的概率推理
- 批准号:
06680292 - 财政年份:1994
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
- 批准号:
2239350 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Continuing Grant
CAREER: Data-Centric Evolutionary Contagion Models with Parallel and Quantum Parallel Computing
职业:具有并行和量子并行计算的以数据为中心的进化传染模型
- 批准号:
2236854 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Continuing Grant
HyperTran: High-Performance Transient Stability Simulation of Power Systems on Modern Parallel Computing Hardware
HyperTran:在现代并行计算硬件上对电力系统进行高性能暂态稳定性仿真
- 批准号:
2226826 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
ROM for FSI analysis in distributed memory parallel computing
用于分布式内存并行计算中FSI分析的ROM
- 批准号:
22K17902 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Development of large-sized nonlinear vibration analysis, based on parallel computing
基于并行计算的大型非线性振动分析的发展
- 批准号:
21K03939 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Scalable System Software for Machine Learning on Heterogeneous Parallel Computing Environments
用于异构并行计算环境上的机器学习的可扩展系统软件
- 批准号:
20H04165 - 财政年份:2020
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of integrated circuits constructed from DNA analogues and application to parallel computing using DNA
由 DNA 类似物构建的集成电路的开发以及使用 DNA 的并行计算的应用
- 批准号:
20K04603 - 财政年份:2020
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




