Geometric researches in complex analysis
复杂分析中的几何研究
基本信息
- 批准号:12304007
- 负责人:
- 金额:$ 16.99万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to investigate complex analysis in the aspect of geometry and, moreover, to give applications of complex analysis to geometry. To these ends, we need to have interchanges of researchers in various fields of mathematics. We held various sympsiums many times and obtained many new results in these fields.H. Fujimoto succeeded in the constructions of hyperbolic hypersurfaces of degree 2^n in the n (【greater than or equal】3)-dimensional complex projective space. He also obtained some sufficient conditions for polynomials to be uniqueness polynomials. S. Mori, together with Y. Aihara, constructed many examples of holomorphic mappings into the complex projective space with pre-assinged positive deficiency. T. Ueda studied fixed points of polynomial automorphisms of C^n and showed that the sum of holomorphic Lefshetz indices vanishes for generalized Henon maps under some conditions. By introducing the notion of balayage vector potentials, H. Yamaguchi maked clear the importance of harmonic forms. H. Sato founded many kinds of Jorgensen groups. H. Kazama studied complex analytic cohomology groups of topologically trivial line bundles over 1-dimension complex torus and showed the existence of formal Hartogs-Laurent series associated with line bundles. A. Kodama investigated the conditions for domains whose boundary are strongly pseudo-convex excluding some singularities to become complete Riemannian manifolds with respect to Webster me trices.
本研究的目的是从几何的角度探讨复分析,并给出复分析在几何中的应用。为此,我们需要在数学的各个领域的研究人员进行交流。我们在这些领域中多次获得了各种各样的渐近性,并得到了许多新的结果。藤本成功地在n(大于或等于3)维复射影空间中构造了2^n次双曲超曲面。他还得到了多项式是唯一多项式的一些充分条件。S. Mori和Y. Aihara等构造了复射影空间中具有预赋正亏的全纯映射的许多例子。T.上田研究了C^n中多项式自同构的不动点,证明了在一定条件下广义Henon映射的全纯Lefshetz指标之和为零.通过引入平衡矢量势的概念,H.山口阐明了和声形式的重要性。H.佐藤创立了许多类型的约根森团体。H. Kazama研究了一维复环面上拓扑平凡线丛的复解析上同调群,证明了与线丛相关的形式Hartogs-Laurent级数的存在性。A.儿玉研究了边界是强伪凸的域的条件,排除了一些奇点,成为关于韦伯斯特矩阵的完备黎曼流形。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Shirosaki: "A family of polynomials with the uniqueness poperty for linearly nondeger be hlomoyhic mapings"Kodai Mathematical Journal. 25. 288-292 (2002)
M.Shirosaki:“具有线性非德格同调映射的唯一性的多项式族”Kodai Mathematical Journal。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Fujimoto: "A family of hyperbolic hypersurfaces in the complex space"Complex Variables. 43. 273-283 (2001)
H.Fujimoto:“复空间中的双曲超曲面族”复变量。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Satoh: "Jorgensen's inequality for classical Schottky groups of real type, II"Journal of Mathematical Society of Japan. 53. 791-811 (2001)
Hiroki Satoh:“实型经典肖特基群的乔根森不等式,II”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Seiki Mori: "Defects of holomorphic curves into P^n(C) for rational moving targets and a space of meromorphic mappings"Complex Variables. 43. 363-379 (2001)
Seiki Mori:“有理移动目标的全纯曲线到 P^n(C) 的缺陷和亚纯映射空间”复杂变量。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akio Kodama: "A remark on generalized complex ellipsoids with spherical boundary points"Korean Math. J.. 51. 285-295 (2000)
Akio Kodama:“关于具有球形边界点的广义复杂椭球体的评论”韩国数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIMOTO Hirotaka其他文献
FUJIMOTO Hirotaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIMOTO Hirotaka', 18)}}的其他基金
Geometric Study of Complex Analysis
复分析的几何研究
- 批准号:
09440054 - 财政年份:1997
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
- 批准号:
22K03267 - 财政年份:2022
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments of higher dimensional value distribution theory and the fundamentals of complex analysis in several variables
高维值分布理论的新进展和多变量复杂分析的基础
- 批准号:
19K03511 - 财政年份:2019
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
- 批准号:
1904332 - 财政年份:2019
- 资助金额:
$ 16.99万 - 项目类别:
Standard Grant
Value distribution theory
价值分配理论
- 批准号:
18K03319 - 财政年份:2018
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of value distribution theory of Gauss maps of immersed surfaces in space forms and their applications to global property of surfaces
空间形式浸入曲面高斯图值分布理论的发展及其在曲面全局性质中的应用
- 批准号:
15K04840 - 财政年份:2015
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric value distribution theory
几何价值分布理论
- 批准号:
26610011 - 财政年份:2014
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Value distribution theory of meromorphic functions based on diffusion processes
基于扩散过程的亚纯函数值分布理论
- 批准号:
24540192 - 财政年份:2012
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value distribution theory of bounded domains
有界域的值分布理论
- 批准号:
23654021 - 财政年份:2011
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Value distribution theory of analytic maps, Diophantine approximation and intersections of analytic cycles
解析图的值分布理论、丢番图近似和解析循环的交集
- 批准号:
23340029 - 财政年份:2011
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Value distribution theory of meromorphic maps, especially on unicity problems and deficiencies on linear systems
亚纯映射的值分布理论,特别是线性系统的单一性问题和缺陷
- 批准号:
21540205 - 财政年份:2009
- 资助金额:
$ 16.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)