The structure of polarized varieties
极化品种的结构
基本信息
- 批准号:12640015
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator Fujita has studied the relation between the theory of #-minimal models and the theory of adjoint bundles. He further studied the behavior of cubic surfaces under the Cremona transformations of P^3.Investigator Ishii has studied the exceptional hypersurface singularities and showed that there are only finitely many weights which give exceptional ones. 'She further classified all the 3-dimensional exceptional singularities of Brieskorn type. She studied many interesting properties of the set of possible values of the invariant K^2 of surface singularities, and further studied the relation between the accumulation points of the set of K^2 of cyclic quotient singularities and the accumulation points, of the corresponding continued fractions. She showed also that, for a given singularity, there exists a maximal manifold through which every surjective morphism from a smooth manifold factors, and she characterized such manifold by the existence of rational curves, and studied the properties such as direct product, quotient and functoriality.Investigator Futaki has showed that for a complex line bundle L together with its Chern class which is a Hodge class, if the action of the automorphism group lifts to L, then the Futaki character lifts to a character of the automorphism group. He gave also an explicit integral expression of this lift, and showed that it can be applied, to yield Mabuchi's K-energy and Ding's functional.Investigator Tsuji has showed the deformation invariance of plurigenera by applying the theory of singular Hermitian metrics.Investigator Nakayama has studied systematically mixed Hodge structures on log deformation families.Investigator Kawachi has generalized results of Reider type on normal surfaces to cases of log algebraic surfaces.Investigator Minagawa has studied criterions of smoothability of weak Fano 3-folds, and showed that Q-factoriality is sufficient. He also found an example of non-smoothable ones without Q-factoriality.
首席研究员Fujita研究了#-极小模型理论和伴随丛理论之间的关系。他进一步研究了三次曲面在P^3的Cremona变换下的行为。研究者石井研究了例外超曲面的奇异性,并证明了只有1000多个权值才能给出例外超曲面。她进一步分类了所有Brieskorn类型的三维异常奇点。她研究了许多有趣的性质的一套可能的价值观不变K^2的表面奇性,并进一步研究了之间的关系的积累点的一套K^2的循环商奇性和积累点,相应的连续分数。她还指出,对于一个给定的奇点,存在一个极大流形,通过该极大流形,光滑流形的每个满射态射因子,她通过有理曲线的存在性来表征这种流形,并研究了直积,商和函性等性质。研究员Futaki表明,对于复线丛L及其Chern类(Hodge类),如果自同构群的作用提升到L,则Futaki特征标提升到自同构群的特征标。他还给出了一个明确的积分表达式,这电梯,并表明,它可以应用,交出马渊的K-研究者Tsuji利用奇异Hermitian度量理论证明了多属的形变不变性;研究者Nakayama系统地研究了原木形变族上的混合Hodge结构;研究者Kawachi将正规曲面上的Reider型结果推广到原木的情形Minagawa研究员研究了弱Fano 3-folds的光滑性准则,并表明Q-因子性是足够的。他还发现了一个没有Q因子的非光滑的例子。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Ishii and H. Chen: "On - K^2 for normal surface singularities II"Intern. J. Math. 11(9). 1193-1202 (2000)
S. Ishii 和 H. Chen:“On - K^2 对于法向表面奇点 II”实习生。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Ishii and M. Tomari: "Hypersurface non-rational singularities which look canonical from their Newton boundaries"Math. Zeitschrift. 237. 125-147 (2001)
S. Ishii 和 M. Tomari:“从牛顿边界来看,超表面非理性奇点看起来是规范的”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Futaki and Y. Nakagawa: "Characters of the automorphism groups associated with Kahler classes and functionals with cocycle conditions"Kodai Math. J.. 24. 1-14 (2001)
A. Futaki 和 Y. Nakakawa:“与 Kahler 类相关的自同构群和具有共循环条件的泛函的特征”Kodai Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Futaki and T. Tsuboi: "Fixed point formula for characters of automorphism group associated with Kahler classes"Math. Res. Letters. 8. 495-507 (2001)
A. Futaki 和 T. Tsuboi:“与 Kahler 类相关的自同构群的特征的不动点公式”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Kawachi: "On the base point freeness of adjoint bundles on normal surfaces"manuscripta math.. 101. 23-38 (2000)
T. Kawachi:“关于法向表面上的伴随束的基点自由度”数学手稿.. 101. 23-38 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJITA Takao其他文献
Cultural Interaction Studies in East Asia
东亚文化互动研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
TAO Demin;FUJITA Takao;eds - 通讯作者:
eds
FUJITA Takao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJITA Takao', 18)}}的其他基金
Diffusion, Transformation and Circulation of Chinese Culture : Chinese coastal area and Japan
中国文化的传播、转化和流通:中国沿海地区与日本
- 批准号:
16202017 - 财政年份:2004
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Basic Research for the Documental Administration in Han Period seen from Dunhuang and Juyan wood slips
从敦煌、居延简看汉代文献管理基础研究
- 批准号:
10610363 - 财政年份:1998
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Logic Circuits for Computer Education in Junior High School
初中计算机教育逻辑电路
- 批准号:
09680255 - 财政年份:1997
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification and structure of polarized varieties
极化品种的分类及结构
- 批准号:
09440008 - 财政年份:1997
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Study on the dimension of the adjoint bundle due to invariants of polarized manifolds
极化流形不变量引起的伴随丛维数研究
- 批准号:
21K03166 - 财政年份:2021
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the dimension of global sections of multiple adjoint bundle of polarized manifolds
极化流形多伴丛整体截面维数的研究
- 批准号:
24540043 - 财政年份:2012
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)