Structures and Representations of Association Schemes
协会计划的结构和表示
基本信息
- 批准号:12640039
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
a. Connection between Algebra and Geometry: The Terwilliger algebra with respect to a base subset of a distance-regular grasph was defined and studied extensively. The use of this algebra enables to investigate modules of Terwilliger algebras of any endpoint much easily and gives a connection between the theory of Delsarte and Terwilliger algebra and its modules.b. Balanced Conditions: Q-polynomial group association schemes were classified.c. Weakly Distance-Regular Digraphs: The definition of weakly distance-regular digraphs together with various constructions were given. Partly as a joint work with Kaishun Wang, classifications of the case with degree 2, and regular group cases, which are called thin, were completed. Degree 3 cases and girth 2 cases are inprogress.d. Type II Matrices: As a joint work with Rie Hosoya, it was shown that if a type II matrix is imprimitive, it can be decomposed as a generalized tensor product of type II matrices of smaller size. The application of this result to a classification of imprimitive spin models is expected.e. Absolute Bound Conjecture of Distance-Regular Graphs and Related Topics: A classification of distance-regular graphs of order (s, 2) was completed and published. The use of Terwilliger algebra was proved to be useful. In particular, if the graph is 3-thin, geometric girths are bounded by 11.
a.代数与几何的联系:距离正则图的基子集的Terwilliger代数被定义并得到了广泛的研究。利用这一代数可以很容易地研究任意端点的Terwilliger代数的模,并给出了Delsarte理论与Terwilliger代数及其模之间的联系。平衡条件:对Q-多项式群结合方案进行分类。弱距离正则有向图:给出了弱距离正则有向图的定义和各种结构。部分作为一个联合工作与王凯顺,分类的情况下,程度2,并定期组的情况下,这是所谓的薄,完成。度3例,围度2例。II型基质:作为与细谷理惠的联合工作,它表明,如果一个II型矩阵是非本原的,它可以被分解为一个广义张量积的II型矩阵的较小的大小。预计该结果将应用于非原始自旋模型的分类。距离正则图的绝对有界猜想及相关主题:完成并发表了(s,2)阶距离正则图的分类。使用Terwilliger代数被证明是有用的。特别地,如果图是3-瘦的,则几何围长以11为界。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Suzuki: "Imprimitive Q-polynomial Association Schemes"Journal of Algebraic Combinatorics. 7. 165-180 (1998)
H. Suzuki:“imprimitive Q-多项式关联方案”代数组合学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Suzuki: "Association Schemes with Multiple Q-polynomial Structures"Journal of Algebraic Combinatorics. 7. 181-196 (1998)
H. Suzuki:“关联方案与多个 Q 多项式结构”代数组合学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kiyota, H.Suzuki: "Character Products and Q-polynomial Group Association Schemes"Journal of Algebra. (to appear).
M.Kiyota,H.Suzuki:“字符积和 Q 多项式群关联方案”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rie Hosoya: "Type II Matrices and Their Bose-Mesner Algebras"Journal of Algebraic Combinatorics. 17・1. 19-37 (2003)
Rie Hosoya:“II 型矩阵及其 Bose-Mesner 代数”代数组合学杂志 17・1(2003 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kaishun Wang: "Weakly Distance-Regular Digraphs"Discrete Mathematics. 26・1-3. 225-233 (2003)
王凯顺:“弱距离-正则图”离散数学26・1-3(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Hiroshi其他文献
MR ZODIAC TOP」Virtual Reality International Conference
MR ZODIAC TOP”虚拟现实国际会议
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi - 通讯作者:
CHO Satoshi
Fukushima Daiichi Nuclear Power Plant Disaster: Recovery Visions and Subsequent Recovery Projects
福岛第一核电站灾难:恢复愿景和后续恢复项目
- DOI:
10.5363/tits.26.3_16 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
塩尻大也;小槻峻司;齋藤匠;OUYANG Mao;Yutaro Furuichi;SUZUKI Hiroshi - 通讯作者:
SUZUKI Hiroshi
MR ZODIAC TOP
十二生肖先生上衣
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi - 通讯作者:
CHO Satoshi
Photoemission-based Characterization of Interface Dipoles and Defect States for Gate Dielectrics
基于光电发射的界面偶极子和栅极电介质缺陷状态的表征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
塩尻大也;小槻峻司;齋藤匠;OUYANG Mao;Yutaro Furuichi;SUZUKI Hiroshi;S. Miyazaki - 通讯作者:
S. Miyazaki
: anoramic Video Capturing for Digital Archiving of Historic Landscape
:用于历史景观数字存档的全景视频捕捉
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi;Tsuyoshi Yamamoto - 通讯作者:
Tsuyoshi Yamamoto
SUZUKI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Hiroshi', 18)}}的其他基金
Usefulness of pre-hospital 12-lead electrocardiogram from K-ACTIVE registry
K-ACTIVE 登记处的院前 12 导联心电图的有用性
- 批准号:
20K08434 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supply on the Houses for the Elderly with the Service to Take Out Self Support and Cooperation of the Elderly and the Community
老年人住房供应与服务开展自养、老年人与社区合作
- 批准号:
17K06733 - 财政年份:2017
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Trial Production of Large Scale Nanofiber/Resin Film with Conductivity and Translucency by Applying Traveling Electric Field
应用行电场试制大尺寸导电半透明纳米纤维/树脂薄膜
- 批准号:
17K06061 - 财政年份:2017
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sharing the view of the earth from an extraterrestrial viewpoint-Internationalization of art expression technology using earth observation satellites-
从外星人的角度分享地球的风景-利用地球观测卫星的艺术表达技术的国际化-
- 批准号:
16K02318 - 财政年份:2016
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pilot study to assess the potential of oral appliance with lingual frenulum depressor therapy for improving respiration during sleep.
初步研究旨在评估口腔矫治器联合舌系带减压器治疗改善睡眠期间呼吸的潜力。
- 批准号:
15K11200 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical Study of Meta-Engineering as Technology Management
元工程作为技术管理的实证研究
- 批准号:
15K03711 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of floral scent characteristics involved in the speciation
花香特征与物种形成相关的研究
- 批准号:
26440215 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alignment of Carbon Nanotubes in Ultraviolet Curing Resin with Traveling Electric Field Application and Electric Property Evaluation of the Composites
紫外固化树脂中碳纳米管的行电场取向及复合材料电性能评价
- 批准号:
25420029 - 财政年份:2013
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implantation of erythropoietin-cultured bone marrow stromal cell in patients with intractable peripheral artery disease
促红细胞生成素培养的骨髓基质细胞植入顽固性外周动脉疾病患者
- 批准号:
24591072 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heat Transfer and Solidification Control of Latent Heat Transportation Slurries by Nano-Particle Addition
纳米颗粒添加对潜热传输浆料的传热和凝固控制
- 批准号:
24360319 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
2200850 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
- 批准号:
2001077 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
- 批准号:
540389-2019 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
- 批准号:
19K03398 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
- 批准号:
19K03451 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Categorical study for representations of finite groups
有限群表示的分类研究
- 批准号:
19K03457 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
1839351 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant