State-Sum Iwarlants of Surface-knot in 4-space
4 空间中表面结的状态和 Iwarlants
基本信息
- 批准号:12640090
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let F be an embedded surface in 4-space. We call it surface knot We consider the projection of F by p(x,y,z,w)=(x,y,z). Then, p(F) has an intersection of sheets. The intersection of three sheets is called a triple point We know many non-orientable surface knots detemine the minimal triple point numbers. However, we had not determined the minimal triple point numbers of oriented surface knot Satoh showed that there is not surface knots of the triple point number one. Kamada showed that for any number n, there exists a surface knot such that the triple point number of F is grater than n. We determine that the triple point number of the 2-twist-spun trefoil is four and that the triple point number of the 3-twist-spun trefoil is six. The first result is shown by using new invariant, called state-sum invariants. To show the first result, we show that if F is a surface knot such that the triple point number of F is three or less that three, then the value of the state sum invariant of F is a … More n integer. On the other hand, the value of the state sum invariant of the 2-twist-spun trefoil is not an integer. And, the 2-twist-spun trefoil has the projection with four triple points. So, the 2-twist spun trefoil has the minimal triple point number four. The second result is shown by using the state-sun invariant obtained from anther quandle, S_4.I made a program for calculation. We made an equation which needs at least triple points. Then we obtain the 3-twist spun trefoil has the minimal triple point number six. We have less examples of surface knots than examples of classical knots. We research charts which is the planer oriented labeled graph satisfying some conditions. This graph is represented an embedded surface in 4-ball and 4-space. Kamada showed that 3-chart is C-move equivalent to a chart without vertices of degree 6. The vertex of degree 6 is corresponded to a triple point C-move means the local move which does not change ambient isotopy classes of the embedded surface obtained from charts. Nagase and Hirota show that 4-chart with at most one crossing is C-move equivalent to a chart without vertices of degree 6. A crossing is a vertex of degree 4. We show that if a 4-chart is with at most two crossing and at most six vertices of degree one, then the chart is C-move equivalent to a chart without vertices of degree 6. If the 4-chart is represent to one embedded sphere in 4-space, then the chart has six vertices of degree 6. Less
设F是四维空间中的嵌入曲面。我们称之为曲面纽结。我们考虑F按p(x,y,z,w)=(x,y,z)的投影。那么,p(F)有一个片的交。三个片的交称为一个三重点。我们知道许多不可定向曲面的纽结决定了最小三重点的个数。然而,我们还没有确定的最小三重点号码定向曲面结佐藤表明,没有表面的三重点号码为1。Kamada证明了对任意数n,存在曲面纽结使得F的三重点数大于n。我们确定了二捻纺三叶纱的三相点数为4,三捻纺三叶纱的三相点数为6。第一个结果是通过使用新的不变量,称为状态和不变量。为了证明第一个结果,我们证明了如果F是一个曲面纽结,使得F的三重点数为3或小于3,则F的状态和不变量的值为a ...更多信息 n整数。另一方面,2捻纺三叶形的状态和不变量的值不是整数。而且,2捻纺三叶有四个三重点的投影。因此,2捻纺三叶草的最小三相点数为4。第二个结果是用另一个量子点S_4得到的态太阳不变量给出的。我们做了一个至少需要三个点的方程。从而得到三捻三叶纱的最小三相点数为6。表面结的例子比经典结的例子少。研究了满足一定条件的面向平面的标号图。该图表示为4-球和4-空间中的嵌入曲面。Kamada表明,3-chart是C-move等价于没有顶点的6度图。6次顶点对应于一个三重点C-move是指不改变图中嵌入曲面的环境合痕类的局部移动。Nagase和Hirota证明了最多有一个交叉点的4-图是C-移动等价于没有6度顶点的图。交叉点是4度顶点。我们证明了,如果一个4-图最多有两个交叉和最多六个顶点的度1,那么图是C-move等价于一个图没有顶点的度6。如果4-图表示为4-空间中的一个嵌入球体,则该图有六个度为6的顶点。少
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Taizo Kanenobu and Akiko Shima: "Two filtrations of ribbon 2-knots"Proceeding of first joint meeting Japan-Mexico in Topology and its Applications.
Taizo Kanenobu 和 Akiko Shima:“带状 2 结的两次过滤”日本-墨西哥拓扑及其应用首次联席会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akiko Shima: "Knotted Klein bottles with only double points"Osaka J.Math.. 40. 779-799 (2003)
Akiko Shima:“只有双点的打结克莱因瓶”Osaka J.Math.. 40. 779-799 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akiko Shima: "Knotted Klein bottles with only double points"Osaka J.Math. 40. 779-799 (2003)
Akiko Shima:“只有双点的打结克莱因瓶”Osaka J.Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Taizo Kanenobu, Akiko Shima: "Two filtrations of ribbon 2-knots"Proceeding of first joint meeting Japan-Mexico in Topology and its Applications.
Taizo Kanenobu、Akiko Shima:“带状 2 结的两次过滤”日本-墨西哥拓扑学及其应用首次联席会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Habiro, Akiko Shima: "Finite type invariants of ribbon 2-knots, II"Topology and its Applications. 113. 265-287 (2001)
Kazuo Habiro、Akiko Shima:“带状 2 结的有限型不变量,II”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMA Akiko其他文献
SHIMA Akiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMA Akiko', 18)}}的其他基金
The relationships development of health competency and social capital among midlife women
中年女性健康能力与社会资本的关系发展
- 批准号:
22592513 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Classification of Minimal Charts
最小图表的分类
- 批准号:
20540093 - 财政年份:2008
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a menopause self-care program with emphasis on farming Lifestyles
制定更年期自我保健计划,重点关注农业生活方式
- 批准号:
19592478 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relations about geometric characteristics of surface knots and invariants
表面结几何特征与不变量的关系
- 批准号:
16540082 - 财政年份:2004
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Elucidation of the geometric meaning of surface knot invariants defined by quandles and its application
Quantles定义的表面结不变量几何意义的阐明及其应用
- 批准号:
17K05242 - 财政年份:2017
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1-parameter family of 1-knot and invariant of surface-knot
1 结的 1 参数族和表面结不变量
- 批准号:
22740039 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Diagrammatic surface-knot theory
图解表面结理论
- 批准号:
18740026 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)