Floer cohomology of Lagrangian submanifolds with non-commutative group actions

具有非交换群作用的拉格朗日子流形的Floer上同调

基本信息

  • 批准号:
    16K05120
  • 负责人:
  • 金额:
    $ 2.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Mahler's conjecture in the three dimensional case
论三维情况下的马勒猜想
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井川治;入江博;奥田隆幸;酒井高司;田崎博之;Hiroshi Iriyeh
  • 通讯作者:
    Hiroshi Iriyeh
複素射影空間のLagrange部分多様体のホモロジー的剛性について
复射影空间拉格朗日子流形的同调刚性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井川治;入江博;奥田隆幸;酒井高司;田崎博之;Hiroshi Iriyeh;入江博
  • 通讯作者:
    入江博
凸体に関するMahler 予想について
关于凸体的马勒猜想
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    石井まゆ;伊藤菜緒子;岡崎竜二;安井幸夫;柴田将敬
  • 通讯作者:
    柴田将敬
The volume product of convex bodies with discrete symmetries
离散对称凸体的体积积
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Iriyeh;H. Ma;R. Miyaoka;Y. Ohnita;Hiroshi Iriyeh;Hiroshi Iriyeh;Hiroshi Iriyeh
  • 通讯作者:
    Hiroshi Iriyeh
複素旗多様体内の二つの実形のFloerホモロジー
复旗流形中两个实数形式的 Florer 同源性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erjavec Zlatko;Inoguchi Jun-ichi;酒井高司
  • 通讯作者:
    酒井高司
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IRIYEH Hiroshi其他文献

IRIYEH Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IRIYEH Hiroshi', 18)}}的其他基金

Research on intersection of a pair of Lagrangian submanifolds via Floer theory
基于Floer理论的一对拉格朗日子流形的交集研究
  • 批准号:
    22740043
  • 财政年份:
    2010
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

極小ラグランジュ部分多様体の幾何の新展開
最小拉格朗日子流形几何学的新进展
  • 批准号:
    23K03122
  • 财政年份:
    2023
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特殊ラグランジュ部分多様体と可積分系へのループ群論的アプローチ
特殊拉格朗日子流形和可积系统的环群理论方法
  • 批准号:
    12J05600
  • 财政年份:
    2012
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
積分幾何学による変分問題:ラグランジュ部分多様体のハミルトン体積最小性
积分几何的变分问题:拉格朗日子流形的哈密顿体积极小性
  • 批准号:
    17740040
  • 财政年份:
    2005
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
幾何学的不変式論と極小ラグランジュ部分多様体,安定ケーラー多様体
几何不变理论、最小拉格朗日子流形、稳定凯勒流形
  • 批准号:
    15654009
  • 财政年份:
    2004
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ラグランジュ部分多様体のフロアー理論とハミルトン力学系
拉格朗日子流形和哈密顿动力系统的底板理论
  • 批准号:
    04F04701
  • 财政年份:
    2004
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ラグランジュ部分多様体のリーマン幾何的研究
拉格朗日子流形的黎曼几何研究
  • 批准号:
    03J08832
  • 财政年份:
    2003
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
極小曲面とハミルトン極小ラグランジュ部分多様体の研究
最小曲面和哈密顿最小拉格朗日子流形的研究
  • 批准号:
    09740046
  • 财政年份:
    1997
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了