Self-avoiding process on high-dimensional gaskets and uniqueness of fixed point of renormalization group

高维垫片的自回避过程及重正化群不动点的唯一性

基本信息

  • 批准号:
    12640116
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

The short time purpose of this research was to analyze the asymptotics of self-avoiding paths on the higher dimensional gaskets, from the viewpoint of a grand unreached destination of mathematical possibilities of renormalization group, which implies that the higher aim of this research is to find clues for the renormalization group as a mathematical analysis of stochastic models. Main results in the project term are the following.1.Triviality of 4-dimensional hierarchical Ising models.We proved the existence of a critical trajectory of renormalization group for 4-dimensional hierarchical Ising model. The trajectory converges to the Gaussian fixed point. A global trajectory analysis far from the Gaussian fixed point is done by rigorous computer assisted proofs. The result suggests the unproved conjecture that in 4 space-time dimensions, the only continuum limit quantum field theory available from the Ising model is the non-interacting free field.2.Self-repelling process on the Sierpinski gasket.On 1-dimensional space and on the Sierpinski gasket, we found a one parameter family of continuous non-trivial self-repelling processes which continuously interpolates the self-avoiding process and the Brownian motion. Discovery is done by introducing an interpolating parameter in the corresponding renormalization group.3.Asymptotic behavior of self-avoiding paths on d-dimensional gaskets.We completed a renormalization group formulation which rigorously implies asymptotic behaviors of self-avoiding path on d-dimensional gaskets.All the results fits in the purpose of the research project in that they are results on the rigorous relations between the trajectory analysis of the renormalization group and the asymptotic behaviors of stochastic models, and also in that the studies focus on the global analysis of renormalization group trajectories.
这项研究的短期目的是从重整化群的数学可能性的一个宏大未达目的地的观点出发,分析高维垫片上自回避路径的渐近性,这意味着本研究的更高目的是为重整化群作为随机模型的数学分析寻找线索。本项目的主要结果如下:1.四维分层伊辛模型的平凡性。我们证明了四维分层伊辛模型重整化群的临界轨道的存在性。轨迹收敛到高斯不动点。通过严格的计算机辅助证明,进行了远离高斯不动点的全局轨迹分析。2.在一维空间和Sierpinski垫片上,我们发现了一族连续的非平凡自排斥过程,它连续地内插着自回避过程和布朗运动。通过在相应的重整化群中引入一个内插参数来发现。3.d维垫片上自回避路径的渐近行为。我们完成了一个重整化群公式,它严格地隐含了d维垫片上自回避路径的渐近行为。所有这些结果都符合研究项目的目的,因为它们是重整化群的轨迹分析与随机模型的渐近行为之间的严格联系的结果,也在于研究集中在重整化群轨迹的全局分析上。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Hara: "Triviality of hierarchical Ising model in four dimensions"Communications in Mathematical Physics. 220. 13-40 (2001)
T.Hara:“四维分层伊辛模型的琐碎性”数学物理通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
B.Hambly, K.Hattori, T.Hattori: "Self-repelling walk on the Sierpinski gasket"Probability Theory and Related Fields. 124. 1-25 (2002)
B.Hambly、K.Hattori、T.Hattori:“谢尔宾斯基垫片上的自排斥行走”概率论及相关领域。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hara, T.Hattori, H.Watanabe: "Triviality of hierarchical Ising model in four dimensions"Communications in Mathematical Physics. 220. 13-40 (2001)
T.Hara、T.Hattori、H.Watanabe:“四维分层伊辛模型的琐碎性”数学物理通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hattori, K Hattori: "Renormalization group approach to a generalization of the law of iterated logarithms for one-dimensional (non-Markovian) stochastic chains"Kokyuroku (Kyoto Univ.). (to appear). (2004)
T.Hattori、K Hattori:“一维(非马尔可夫)随机链迭代对数定律的重整化群方法推广”Kokyuroku(京都大学)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hara, T.Hattori, H.Watanabe: "Triviality of hierarchical Lsing model in four dimensions"Communications in mathematical Physics. 220. 13-40 (2001)
T.Hara、T.Hattori、H.Watanabe:“四维分层 Lsing 模型的琐碎性”数学物理通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HATTORI Tetsuya其他文献

HATTORI Tetsuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HATTORI Tetsuya', 18)}}的其他基金

Stochastic ranking process and function valued complete uniform law of large numbers
随机排序过程和函数值完全一致大数定律
  • 批准号:
    18K03344
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic ranking process and its applications to web ranking
随机排名过程及其在网络排名中的应用
  • 批准号:
    26400146
  • 财政年份:
    2014
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research for renormalization group oriented stochastic analysis
面向重整化群的随机分析基础研究
  • 批准号:
    21340020
  • 财政年份:
    2009
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards a mathematical foundation of renormalization group oriented stochastic analysis
面向重正化群随机分析的数学基础
  • 批准号:
    17340022
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Restoration of symmetry in stochastic models on fractals
分形随机模型中对称性的恢复
  • 批准号:
    09640298
  • 财政年份:
    1997
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of Non-Contacting Gasket: Verification and Experiment of Sealing Mechanism Inversely Using Temperature Dependence of Liquid Viscosity
非接触式垫片的开发:​​逆向利用液体粘度的温度依赖性来验证和实验密封机制
  • 批准号:
    16K06037
  • 财政年份:
    2016
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of differential operators derived from singular geometric structures and their probabilistic counterparts
从奇异几何结构导出的微分算子及其概率对应物的数学分析
  • 批准号:
    15K17554
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Experimental and FEM stress analysis of a pipe-rubber-seal-gasket structure
管-橡胶-密封-垫片结构的实验和有限元应力分析
  • 批准号:
    468695-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research and Development Grants
Experimental and FEM stress analysis of a pipe-rubber-seal-gasket structure
管-橡胶-密封-垫片结构的实验和有限元应力分析
  • 批准号:
    468695-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research and Development Grants
Impact of rubber gasket thickness on surface pressures/loads in pressurized environments
橡胶垫片厚度对加压环境中表面压力/载荷的影响
  • 批准号:
    452170-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Engage Grants Program
Potential theory on space complexity and ideal boundary
空间复杂度与理想边界势理论
  • 批准号:
    25287015
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realization of non-lubricated sliding between polymer gasket and cylinder by using controlling surface mechanical property of material
通过控制材料表面力学性能实现聚合物垫片与气缸之间的无润滑滑动
  • 批准号:
    23760695
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Improvement of thermo-oxidative degradation resistance of gasket rubber sheet by gas barrier film
利用阻气膜提高垫片橡胶板的热氧化降解性能
  • 批准号:
    22560083
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
フラクタル上のラプラシアンの構成と測度論的リーマン構造の研究
分形拉普拉斯构造与测度黎曼结构的研究
  • 批准号:
    08J06088
  • 财政年份:
    2008
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study on the Sealing Performance of Pipe Flange Connections at Elevated Temperature by Computational Mechanics
高温下管道法兰连接密封性能的计算力学研究
  • 批准号:
    17560120
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了