Study on Multifractal and its Applications to the Digital Sum Problems

多重分形及其在数字和问题中的应用研究

基本信息

  • 批准号:
    12640135
  • 负责人:
  • 金额:
    $ 0.45万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

The purpose of this research project is to study a system of infinitely many difference equations and functional equation with respect to the multinomial measure, which is a typical multifractal measure, and to apply this study to the digital sum problems expanded in the p-adic number. We investigated the digital sum problems systematic by using the multinomial measure. Each investigator considered his subject positively and made usefulcontribution. We enumerate the results in the following.1. Usual digital sum problems were solved by using the multinomial measures.2. We introduced a generalization of the power and the exponential sums, which contained information per digit, and gave explicit formulas of them by using the multinomial measure.3. As an application of the formula obtained above, we gave an explicit formula of the number of occurrences of subblock in the p-adic expansion.4. By generalizing the distribution function of multinomial measure with complex coefficients, we gave another explicit formula of Coquet's summation formula related to the binary digits in the multiple of three.Above complexity is only one instance of a generalization of the multinomial measure. In the process of this study, we found that new classes of measures, which contain the multinomial measures, are still more effective for the digital sum problems. We should prepare an effective theory of these measures for applications of the digital sum problems.
本课题的目的是研究关于多项式测度的无穷多个差分方程和函数方程组,多项式测度是一种典型的多重分形测度,并将这一研究应用于p-adic数上展开的数字和问题。利用多项式测度系统地研究了数字和问题。每位研究者都对自己的课题给予了积极的评价,并做出了有益的贡献。我们列举的结果如下。1.利用多项式测度解决了一般的数字和问题.引入了幂和和指数和的推广,每一位都包含信息,并利用多项式测度给出了它们的显式表达式.作为上述公式的应用,我们给出了p-adic展开式中子块出现次数的显式公式.通过推广复系数多项式测度的分布函数,给出了与三的倍数的二进制数有关的Coquet求和公式的另一个显式公式,上述复杂性只是多项式测度的推广的一个例子.在研究的过程中,我们发现包含多项式测度的新测度类对于数字和问题仍然是更有效的。我们应该准备一个有效的理论,这些措施的数字和问题的应用。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Katsushi Muramoto, Tatsuya Okada, Takeshi Sekiguchi, Yasunobu Shiota: "Digital Sum Problems for the p-adic Expansion of Natural Numbers interdisciplinary"Information sciences. Vol.6. 105-109 (2000)
Katsushi Muramoto、Tatsuya Okada、Takeshi Sekiguchi、Yasunobu Shiota:“自然数跨学科 p-adic 扩展的数字和问题”信息科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Katsushi Muramoto: "Generalized Digital Sum Problems for the p-adic Expansion"(to appear).
Katsushi Muramoto:“p 进数展开的广义数字和问题”(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Katsushi Muramoto, Tatsuya Okada, Takeshi Sekiguchi, Yasunobu Shiota: "Generalized Digital Sum Problems for the p-adic Expansion"(to appear).
Katsushi Muramoto、Tatsuya Okada、Takeshi Sekiguchi、Yasunobu Shiota:“p 进数展开的广义数字和问题”(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Katsushi Muramoto: "An Explicit Formula of Subblock Occurrences for the p-adic Expansion"Interdisciplinary Information Sciences. (to appear).
Katsushi Muramoto:“p-adic 扩展的子块出现的显式公式”跨学科信息科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akio Koizumi, Masayuki Kathhira, Takeshi Sekiguchi, Yasunobu Shiota: "Log-Normality of Air Contaminants and its Hidden Characteristics Useful for Industrial Hygiene Technology"Journal of Occupational Health. Vol.42. 281-283 (2000)
Akio Koizumi、Masayuki Kathira、Takeshi Sekiguchi、Yasunobu Shiota:“空气污染物的对数正态性及其对工业卫生技术有用的隐藏特征”职业健康杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADA Tatsuya其他文献

OKADA Tatsuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADA Tatsuya', 18)}}的其他基金

Facilitation of ion implantation through femtosecond-laser-induced modifications on diamond surface
通过飞秒激光诱导金刚石表面改性促进离子注入
  • 批准号:
    19K05033
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A proposal for electrode formation at low annealing temperatures via the application of femtosecond-laser-induced modifications on silicon carbide
通过在碳化硅上应用飞秒激光诱导改性在低退火温度下形成电极的建议
  • 批准号:
    15K06466
  • 财政年份:
    2015
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New understanding of deformation and recrystallization based on single-crystal stress measurement
基于单晶应力测量对变形和再结晶的新认识
  • 批准号:
    23560088
  • 财政年份:
    2011
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Source of surface defects in silicon carbide epitaxial files and their elimination method
碳化硅外延锉表面缺陷的来源及消除方法
  • 批准号:
    16560009
  • 财政年份:
    2004
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: MODULUS: A Novel Spatiotemporal Multifractal Analysis to Evaluate Genome Dynamics
合作研究:MODULUS:一种评估基因组动力学的新型时空多重分形分析
  • 批准号:
    1936800
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Standard Grant
Collaborative Research: MODULUS: A Novel Spatiotemporal Multifractal Analysis to Evaluate Genome Dynamics
合作研究:MODULUS:一种评估基因组动力学的新型时空多重分形分析
  • 批准号:
    1936775
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Standard Grant
A study of statistical properties of cryptocurrencies and their time series charactaristics by multifractal analsysis
通过多重分形分析研究加密货币的统计特性及其时间序列特征
  • 批准号:
    18K01556
  • 财政年份:
    2018
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Analysis of Random Multifractal Measures
随机多重分形测量的随机分析
  • 批准号:
    1811087
  • 财政年份:
    2018
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Standard Grant
Multifractal Analysis of Self-Similar Measures
自相似测度的多重分形分析
  • 批准号:
    438375-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Fractal and multifractal structure of non-conformal repellers
非共形排斥极的分形和多重分形结构
  • 批准号:
    EP/K029061/1
  • 财政年份:
    2014
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Research Grant
Multifractal Analysis of Self-Similar Measures
自相似测度的多重分形分析
  • 批准号:
    438375-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Multifractal Analysis of Self-Similar Measures
自相似测度的多重分形分析
  • 批准号:
    438375-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Multifractal Analysis of Self-Similar Measures
自相似测度的多重分形分析
  • 批准号:
    425052-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了