Stochastic Analysis of Random Multifractal Measures
随机多重分形测量的随机分析
基本信息
- 批准号:1811087
- 负责人:
- 金额:$ 12.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fractals are defined by the repetition or near-repetition of a pattern on infinitely many scales. They appear extensively in nature and are prevalent in human-generated data such as financial time series, sound files, and internet traffic patterns. By their very nature fractals are rough, non-differentiable objects that cannot be studied by the classical mathematical methods of calculus. The more modern tools of multifractal analysis, which quantify the degree of roughness that appears on various scales, can be used instead. It is particularly interesting to apply multifractal analysis to randomly generated objects, which by default tend to exhibit fractal behavior. Random measures, which for example describe the rainfall distribution over a particular state or the distribution of energy in turbulent fluid flows, are a particularly fruitful area for employing multifractal analysis. The results of such an analysis can often be used for prediction and forecasting of the underlying random system. This research project aims to further develop the mathematical foundations for analysis of multifractal properties.The aim of this project is to analyze the multifractal properties of a broad class of random measures that appear in models of statistical mechanics. The focus will be on random pinning models, random polymer models, random measures arising in two-dimensional conformally invariant systems, and spectral measures of random matrices. In all cases, the major quantity of interest will be the multifractal spectrum, which quantifies the amount of mass the random measure assigns around various points in the space. Computation of the multifractal spectrum is closely related to the theory of large deviations for computing the decay of probabilities of rare events. Many of the tools from that theory will be employed in this project, including the notion of Gibbs condition for describing the most likely behavior of the random system when a rare event occurs. As all the random measures listed above can be described using tools from stochastic analysis, specifically the Wiener chaos decomposition, a particular goal of this project will be to incorporate tools from stochastic analysis into this theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分形的定义是一种模式在无限多个尺度上的重复或近似重复。它们在自然界中广泛存在,并普遍存在于人类生成的数据中,如金融时间序列,声音文件和互联网流量模式。就其本质而言,分形是粗糙的、不可微的物体,不能用微积分的经典数学方法来研究。可以使用更现代的多重分形分析工具来代替,它量化了在各种尺度上出现的粗糙程度。将多重分形分析应用于随机生成的对象特别有趣,这些对象默认情况下倾向于表现出分形行为。随机测量,例如描述降雨分布在一个特定的状态或能量分布在湍流流体流动,是一个特别富有成效的领域,采用多重分形分析。这种分析的结果通常可以用于预测和预报潜在的随机系统。本研究课题的目的是进一步发展多重分形特性分析的数学基础,分析统计力学模型中出现的一类随机测度的多重分形特性。重点将放在随机钉扎模型,随机聚合物模型,随机措施所产生的二维共形不变系统,随机矩阵的频谱措施。在所有情况下,感兴趣的主要量将是多重分形谱,它量化了随机测量在空间中各个点周围分配的质量量。多重分形谱的计算与计算稀有事件概率衰减的大偏差理论密切相关。该理论中的许多工具将在本项目中使用,包括吉布斯条件的概念,用于描述随机系统在罕见事件发生时最可能的行为。由于上面列出的所有随机测量都可以使用随机分析工具进行描述,特别是维纳混沌分解,因此该项目的一个特殊目标是将随机分析工具纳入该理论。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Passage Time Geometry of theLast Passage Percolation Problem
最后通道渗滤问题的通道时间几何
- DOI:10.30757/alea.v18-10
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alberts, Tom;Cator, Eric
- 通讯作者:Cator, Eric
Busemann functions and semi-infinite O’Connell–Yor polymers
Busemann 函数和半无限 OConnell 聚合物
- DOI:10.3150/19-bej1177
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Alberts, Tom;Rassoul-Agha, Firas;Simper, Mackenzie
- 通讯作者:Simper, Mackenzie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Alberts其他文献
Thomas Alberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Alberts', 18)}}的其他基金
Seminar on Stochastic Processes 2019
2019年随机过程研讨会
- 批准号:
1850630 - 财政年份:2019
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Conference Proposal: Random Conformal Geometry and Related Fields
会议提案:随机共形几何及相关领域
- 批准号:
1806979 - 财政年份:2018
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Conference Proposal: Semester on KPZ Universality and Directed Polymers
会议提案:KPZ 通用性和定向聚合物学期
- 批准号:
1656377 - 财政年份:2017
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Conference Proposal: Conference Grant Application for Thematic Programme on Random Geometry
会议提案:随机几何专题项目会议拨款申请
- 批准号:
1502404 - 财政年份:2015
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Engineering Creativity Award: Piezoelectric Damping of Flexible Structures
工程创意奖:柔性结构的压电阻尼
- 批准号:
9196093 - 财政年份:1991
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Engineering Creativity Award: Piezoelectric Damping of Flexible Structures
工程创意奖:柔性结构的压电阻尼
- 批准号:
8811633 - 财政年份:1988
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
- 批准号:
2309847 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 12.8万 - 项目类别:
Continuing Grant
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
A study on random walks on covering graphs via discrete geometric analysis and stochastic analysis
基于离散几何分析和随机分析的覆盖图随机游走研究
- 批准号:
18J10225 - 财政年份:2018
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spectral analysis of stochastic processes and random fields
随机过程和随机场的谱分析
- 批准号:
1512936 - 财政年份:2015
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
CAREER: Free Probability and Connections to Random Matrices, Stochastic Analysis, and PDEs
职业:自由概率以及与随机矩阵、随机分析和偏微分方程的联系
- 批准号:
1254807 - 财政年份:2013
- 资助金额:
$ 12.8万 - 项目类别:
Continuing Grant
Data-driven stochastic analysis of flow in random heterogeneous media
随机异质介质中流动的数据驱动随机分析
- 批准号:
0809062 - 财政年份:2008
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Stochastic analysis on the phase separating random interface
相分离随机界面的随机分析
- 批准号:
19740054 - 财政年份:2007
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
AMC-SS: Stochastic analysis and random medium in continuous space and time
AMC-SS:连续空间和时间中的随机分析和随机介质
- 批准号:
0606615 - 财政年份:2006
- 资助金额:
$ 12.8万 - 项目类别:
Continuing Grant














{{item.name}}会员




