Research on a refinement of the energy inequality for weak solutions to the Navier-Stokes equations
纳维-斯托克斯方程弱解能量不等式的细化研究
基本信息
- 批准号:12640200
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Though the mathematical research on the Navier-Stokes equations that describe the motion of incompressible fluid has a long history, the theory has not completed yet. In particular concerning the problems of the regularity and uniqueness of weak solutions, we have only partial answers. A weak solution satisfies equations only in some weak sense, and therefore it may have singular points. If a solution is smooth, then it preserves energy with respect to time variable. For some weak solutions we can show the non-increasing property of energy, but it is uncertain whether they preserve energy or not. It is called the "energy inequality." For weak solutions the integrability of time-derivative is unclear only from the definition. This is why we cannot show the preservation of energy. This fact suggests that time-derivative is a singular measure with respect to "time". Consequently we must consider the integral of this "singular" part to show the preservation of energy.We know that it is possible to estimate the decrease of energy from below by use of fractional time-derivative for the weak solution constructed by the method of discrete Morse flow. This is a new estimate. The purpose of this research is to study the possibility of such a refinement for any weak solution. For precise, we clarified the following facts. We consider weak solutions as functions which map to the space of square-integrable functions. Then the decrease of energy is related to the limit of the 1/2-time-difference of solutions in the sense of Nikol'skii. If we assume that the limit is zero with or without some speed, then we can show the energy identity with an additional term which compensates the decrease of energy. Furthermore without the assumption of the existence of limit, we can show the energy identity with another additional term of different expression. The difference of expression comes from that of topology of convergence of limit of time-difference.
描述不可压缩流体运动的Navier-Stokes方程的数学研究由来已久,但其理论研究尚未完成。特别是关于弱解的正则性和唯一性问题,我们只有部分答案。一个弱解只在某种弱意义下满足方程,因此它可能有奇点。如果一个解是光滑的,那么它相对于时间变量保持能量。对于某些弱解,我们可以证明其能量不增,但不确定它们是否保持能量。这就是所谓的“能源不平等”。“对于弱解,时间导数的可积性仅从定义中不清楚。这就是为什么我们不能显示能量的保存。这一事实表明,时间导数是关于“时间”的奇异度量。我们知道,对于离散莫尔斯流方法构造的弱解,利用分数阶时间导数可以从下面估计能量的减少。这是一个新的估计。本研究的目的是研究对任何弱解进行这种加细的可能性。准确地说,我们澄清了以下事实。我们考虑弱解作为映射到平方可积函数空间的函数。能量的降低与解的Nikol'skii意义下的1/2时间差的极限有关。如果我们假设极限为零,有或没有速度,那么我们可以用一个额外的项来补偿能量的减少。而且,在不假设极限存在的情况下,我们可以用另一个不同表达式的附加项来证明能量恒等式。这种表达上的差异来自于时间差极限收敛的拓扑上的差异。
项目成果
期刊论文数量(72)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nagasawa: "Blow-up solutions for ordinary differential equations associated to harmonic maps and their applications"J. Math. Soc. Japan. 53・2. 485-500 (2001)
T. Nagasawa:“与调和映射相关的常微分方程的放大解及其应用”J. Math Japan 53・2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nagasawa: "A refinement of the energy inequality for the Navier-Stokes equations"Nonlinear Anal.. 47・6. 4245-4256 (2001)
T.Nagasawa:“纳维-斯托克斯方程能量不等式的改进”非线性分析.. 47・6(2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Fujiie: "Semiclassical behavior of the scattering phase near a critical value of the potential"京都大学数理解析研究所講究録. 1212. 18-31 (2001)
S.Fujiie:“势能临界值附近的散射相的半经典行为”京都大学数学科学研究所 Kokyuroku。1212. 18-31 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Nakane: "Numerical analysis for hyperbolic Ginzburg Landau system"Nonlinear Anal.. (to appear).
K. Nakane:“双曲 Ginzburg Landau 系统的数值分析”非线性分析..(待出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Fujiie: "Semiclassical behavior of the scattering phase near a critical value of the potential"Surikaisekikenkyusho Kokyuroku. 1212. 18-31 (2001)
S. Fujiie:“势能临界值附近散射相的半经典行为”Surikaisekikenkyusho Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAGASAWA Takeyuki其他文献
NAGASAWA Takeyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAGASAWA Takeyuki', 18)}}的其他基金
The generalized rotational hypersurfaces and their geomteric evolution problems
广义旋转超曲面及其几何演化问题
- 批准号:
25400156 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of gradient flow for the bending energy of plane curves under multiple constraints
多重约束下平面曲线弯曲能梯度流分析
- 批准号:
22540219 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reserch on the stability of solutions of geometric evolution equation using group equivariance
利用群等方差研究几何演化方程解的稳定性
- 批准号:
17540188 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on geometric evolution equations for hypersurfaoes
超表面几何演化方程研究
- 批准号:
15540195 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)