Research on geometric evolution equations for hypersurfaoes

超表面几何演化方程研究

基本信息

  • 批准号:
    15540195
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this research, we consider gradient flows associated to functionals defined on some family of hypersurfaces. Gradient flow, which is the deformation of an object to the steepest direction of the gradient of functional, is one of methods for finding critical points of functionals. Therefore it is important for the research to analyze properties of functionals.The Helfrich variational problem is the minimizing problem of Willmore functional among the closed suefaces with the prescribed area and enclosed volume. This is one of models for shape transformation theory of human red blood cell. The associated gradient flow is called the Helfrich flow. It is not difficult to see spheres are stationary solutions. Nagasawa and Kohsaka studied this geometric flow, and obtained the flowing facts, (1)The time local existence theorem and the uniqueness theorem for arbitrary initial surfaces. (2)The global existence theorem for initial surfaces that are close to spheres. (3)The existence of the cen … More ter manifold near spheres and estimates of its dimension. These results have been submitted for an academic journal. Nagasawa and Takagi studied stationary solutions bifurcating from spheres. They had already obtained results of the existence and stability for axially symmetric bifurcating solutions before this research project. To study the existence of not necessarily axially symmetric solutions, the reduced bifurcation equation was derived. Furthermore we deduced the normal form from the reduced bifurcation equation, and determined all of solutions for modes 2 and 4. Perturbing them it might be possible to construct solutions of the bifurcation equation.Sakamoto considered the functional defined by the squared integral of normal curvature associated immersions of manifold. He derived the first variation formula and investigated the structure of critical points. The Willmore functional is a special case of his study. Yanagida considered the geometric flow associated with three-face free boundary problem with triple junction, and he got a criterion for stability of steady solutions. Tachikawa researched the regularity of weak solutions to equations from geometric variational problem. In particular he obtained a result on the regularity of harmonic maps into Finsler manifold. Koike and Arisawa considered various equations containing geometric evolution equations by using the theory of viscosity solutions. Ohta and Shimokawa researched on the blowup problem of solutions. Less
在这项研究中,我们考虑与定义在某些超曲面上的泛函相关的梯度流。梯度流是指物体向泛函梯度最陡方向的变形,是求泛函临界点的一种方法。因此,分析泛函的性质对研究具有重要意义。Helfrich变分问题是具有给定面积和封闭体积的闭合曲面之间的Willmore泛函的最小化问题。这是人类红细胞变形理论的模型之一。与之相关的梯度流称为赫尔夫里奇流。不难看出,球体是静止的溶液。长泽和Kohsaka研究了这种几何流动,得到了流动事实:(1)任意初始曲面的时间局部存在定理和唯一性定理。(2)逼近球面的初始曲面的整体存在定理。(3)Cen…的存在更多球面附近的流形及其维度的估计。这些研究结果已发表在一份学术期刊上。长泽和高木研究了从球体分叉出来的静止解。在本研究项目之前,他们已经得到了轴对称分支解的存在性和稳定性的结果。为了研究非轴对称解的存在性,导出了简化的分叉方程。此外,我们从简化的分叉方程推导出规范形,并确定了模2和4的所有解。扰动它们可能构造分叉方程的解。Sakamoto考虑了由流形的法曲率平方积分定义的泛函。他推导了第一个变分公式,并研究了临界点的结构。威尔莫尔泛函是他研究的一个特例。柳田考虑了具有三个结点的三面自由边界问题的几何流动,得到了定常解稳定的一个判据。Tchikawa从几何变分问题出发研究方程弱解的正则性。特别地,他得到了调和映射到Finsler流形的正则性的一个结果。Koike和Arisawa利用粘性解理论研究了包含几何演化方程的各种方程。Ohta和Shimokawa研究了解的爆破问题。较少

项目成果

期刊论文数量(165)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A remark on stable subharmonic solutions of time-periodic reaction-diffusion equations
时间周期反应扩散方程稳定次谐波解的评述
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Yagisita;E.Yanagida
  • 通讯作者:
    E.Yanagida
粘性解による値関数の特徴づけ
通过粘性解表征价值函数
Interior estimates in Campanato spaces related to quadratic functional
与二次泛函相关的 Campanato 空间中的内部估计
Counterexample to global existence for systems of nonlinear wave equations with different propagation speeds
不同传播速度的非线性波动方程组全局存在性的反例
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.Fukuizumi;M.Ohta;M.Ohta
  • 通讯作者:
    M.Ohta
A partial regularity result for harmonic maps into Finsler manifolds
调和映射到芬斯勒流形的部分正则性结果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGASAWA Takeyuki其他文献

NAGASAWA Takeyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGASAWA Takeyuki', 18)}}的其他基金

The generalized rotational hypersurfaces and their geomteric evolution problems
广义旋转超曲面及其几何演化问题
  • 批准号:
    25400156
  • 财政年份:
    2013
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of gradient flow for the bending energy of plane curves under multiple constraints
多重约束下平面曲线弯曲能梯度流分析
  • 批准号:
    22540219
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reserch on the stability of solutions of geometric evolution equation using group equivariance
利用群等方差研究几何演化方程解的稳定性
  • 批准号:
    17540188
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on a refinement of the energy inequality for weak solutions to the Navier-Stokes equations
纳维-斯托克斯方程弱解能量不等式的细化研究
  • 批准号:
    12640200
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Willmore functional and Lagrangian surfaces
威尔莫尔函数曲面和拉格朗日曲面
  • 批准号:
    339625802
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Priority Programmes
Minimizers of the Willmore functional with prescribed area and volume (B03)
具有规定面积和体积的 Willmore 函数的最小化 (B03)
  • 批准号:
    112660140
  • 财政年份:
    2009
  • 资助金额:
    $ 1.34万
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了