Glassy Dynamics in Random Spin Systems
随机自旋系统中的玻璃动力学
基本信息
- 批准号:12640367
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aging phenomena in spin glasses, the most typical glassy dynamics, have been extensively studied. Their various aspects in the Edwards-Anderson (EA) model have been numerically examined by the Monte Carlo method. Most of the results simulated turn out to be well interpreted by means of the droplet picture : the aging phenomena associate with the extremely slow equilibration which is due to thermally-activated processes and is represented in terms of the growth law of the spin-glass (SG) coherence length (or the mean size of SG domains), R (tw), at time tw after rapid quench of the system to the low-temperature SG phase. Furthermore we have confirmed the scaling expressions of various quantities in terms of R (tw) and L (t), where the latter is the mean size of droplets excited within time scale of t. More explicitly, we have found the following results.1) By the simulation on the zero-field-cooled magnetization (ZFCM), R (tw) is found to cumulatively grow even when the temperature is c … More hanged within the SG phase. When its growth law extracted from the simulation is directly applied to the corresponding experimental ZFCM measurement whose time scale is larger by more than 10 orders of magnitude than the simulation, the ZFCM data turn out to lie on a universal function of R (tw). This is the first direct and quantitative coincidence between experiment and simulation on aging phenomena. 2) The isothermal aging process in the 4-dimensional (4D) EA model has been intensively studied, and it has been found for the first time that the most of the results, including the growth law of R (tw), are well described by the droplet theory. Furthermore, the droplet excitation energy is found to become anomalously small in the time range where R (tw) and L (t) are comparable. We have argued that this fact is the origin of difference between the ZFCM and field-cooled magnetization observed experimentally. 3) The temperature-shift aging process in the 3D EA model has been examined through the ac susceptibility, and various scaling expressions have been confirmed in terms of R (tw) and L (t) simulated. The precursor of the chaos (rejuvenation) effect has been also found for the first time in simulation. Less
自旋玻璃中的老化现象是最典型的玻璃动力学现象,已被广泛研究。它们在Edwards-Anderson(EA)模型中的各个方面已经用Monte Carlo方法进行了数值研究。大部分的模拟结果被证明是很好的解释,通过液滴图片:老化现象与非常缓慢的平衡,这是由于热激活过程,并表示在自旋玻璃(SG)的相干长度(或SG域的平均尺寸),R(tw)的增长规律,在时间tw后,系统的快速淬火到低温SG相。此外,我们还确定了各种量在R(tw)和L(t)方面的标度表达式,其中L(t)是在时间尺度t内激发的液滴的平均尺寸。通过对零场冷却磁化强度(ZFCM)的模拟,发现即使在温度为20 ℃时,R(tw)也会累积增长 ...更多信息 在SG阶段挂起。当从模拟中提取的增长规律直接应用到相应的实验ZFCM测量中时,其时间尺度比模拟大10个数量级以上,ZFCM数据位于R(tw)的一个普适函数上。这是第一次直接和定量的一致性之间的实验和模拟老化现象。2)对4维EA模型中的等温时效过程进行了深入研究,首次发现液滴理论能很好地描述大部分结果,包括R(tw)的增长规律。此外,发现液滴激发能量在R(tw)和L(t)相当的时间范围内变得异常小。我们认为,这一事实是ZFCM和场冷磁化实验观察到的差异的起源。3)通过交流磁化率研究了3D EA模型中的温移时效过程,并根据模拟的R(tw)和L(t)证实了各种标度表达式。在模拟中还首次发现了混沌(返老还童)效应的前兆。少
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L.W.Bernardi: "Aging of the Zero-Field-Cooled Magnetization in Ising Sping Glasses : Experiment and Numerical Simulation"Phys.Rev.Lett.. 86. 720-723 (2001)
L.W.Bernardi:“伊辛望远镜中零场冷却磁化的老化:实验和数值模拟”Phys.Rev.Lett.. 86. 720-723 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L.W.Bernardi: "Aging of the Zero-Field-Cooled Magnetization in Ising Spin Glasses : Experiment and Numerical Simulation"Phys. Rev. Lett.. 86. 720-723 (2001)
L.W.Bernardi:“伊辛自旋玻璃中零场冷却磁化的老化:实验和数值模拟”物理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Komori, H. yoshino, and H. Takayama: "Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function"J. Phys. Soc. Jpn. 69. 1192-1201 (2000)
T. Komori、H. yoshino 和 H. Takayama:“3D Ising 自旋玻璃模型中老化动力学的数值研究。II. 自旋自相关函数的准平衡状态”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Komori: "Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function"J. Phys. Soc. Jpn.. 69. 1192-1201 (2000)
T.Komori:“3D Ising 自旋玻璃模型中老化动力学的数值研究。II.自旋自相关函数的准平衡状态”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Komori: "Numerical Study on Aging Dynamics in Ising Spin-Glass Models : Temperature-Change Protocols"J.Phys.Soc.Jpn.Suppl.. 69A. 228-237 (2000)
T.Komori:“伊辛旋转玻璃模型中老化动力学的数值研究:温度变化协议”J.Phys.Soc.Jpn.Suppl.. 69A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAYAMA Hajime其他文献
TAKAYAMA Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAYAMA Hajime', 18)}}的其他基金
Aging Phenomena in Spin Glasses
旋转玻璃的老化现象
- 批准号:
10640362 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Physics of Fluctuations in Glassy
玻璃态涨落的统计物理
- 批准号:
10044064 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Aging Phenomena in Complex Systems
复杂系统中的老化现象
- 批准号:
08044060 - 财政年份:1996
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for international Scientific Research
Studies on Mechanisms of Hierarchical Relaxation in Spin Glasses
自旋玻璃分级弛豫机制研究
- 批准号:
08640477 - 财政年份:1996
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transition and Dynamics in Complex Systems
复杂系统中的转变和动力学
- 批准号:
06044031 - 财政年份:1994
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for international Scientific Research
Ergodic-NonErgodic Transition Phenomena in Condensed Matters
凝聚态物质中的历经-非历经转变现象
- 批准号:
01540298 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Dynamics Associated with Metastable States in Random Systems
与随机系统中亚稳态相关的动力学
- 批准号:
60540227 - 财政年份:1985
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
- 批准号:
23K03192 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Spin Glass Systems as a Lossy Compression
作为有损压缩的旋转玻璃系统
- 批准号:
21K12046 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
- 批准号:
1954790 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Formation of single-crystal Si spin glass with a single W atom as a magnetic dopant and elucidation of its magnetic properties
以单个W原子作为磁性掺杂剂的单晶硅自旋玻璃的形成及其磁性能的阐明
- 批准号:
20H02560 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
- 批准号:
RGPIN-2015-04637 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
- 批准号:
19K23418 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
- 批准号:
1855509 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Continuing Grant
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
- 批准号:
RGPIN-2015-04637 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Preparation of super spin glass magnetic nanoparticles and biomedical application for hyperthermia therapy
超自旋玻璃磁性纳米颗粒的制备及其热疗生物医学应用
- 批准号:
17H02762 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)