Research on glass transition, and its mechanism based on the density functional theory

基于密度泛函理论的玻璃化转变及其机理研究

基本信息

  • 批准号:
    12650063
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

As an extension of the density functional theory (DFT), we formulated M-body DFT with M an arbitrary integer larger than 1. M=2 corresponds to the hypernetted-chain (HNC) theory. For M=3 we successfully performed numerical calculations for one-dimensional liquids. That is, about after 10000 times of iteration, rather complicated integral equation gave converged solutions for two- and three-body correlation functions. And the results turned out to improve the HNC theory considerably.As a dynamic extension of the DFT, We applied the Mori-Fujisaka projection operator method to derive the Fokker-Planck equation for the probability functional of the density field. This equation is the same with the one already derived by us more than ten years ago but the free-energy functional is based on the microcanonical ensemble and it is quite different from the old one which is based on the grand canonical ensemble. The application of this new dynamic equation in the field of glass transition is now under consideration.As to the glass transition, we performed a new kind of molecular dynamics simulations, in which some particles are held fixed in space (not allowed to move). These fixed particles affect significantly on relaxation dynamics in dense liquids and from this we obtained quantitative information on the size of a dynamically correlated region.Finally we gave an exact solution to the two particle system confined in a rectangular box. We discussed the van der Waals instability and slow dynamics in this simple system analytically.
作为密度泛函理论(DFT)的推广,我们建立了M体DFT,其中M是大于1的任意整数。M=2对应于超网链(HNC)理论。对于M=3,我们成功地进行了一维液体的数值计算。也就是说,经过大约10000次的迭代,相当复杂的积分方程给出了收敛解的两体和三体相关函数。作为密度泛函理论的动力学推广,我们应用Mori-Fujisaka投影算子方法导出了密度场几率泛函的Fokker-Planck方程。这个方程与我们十多年前导出的方程相同,但自由能泛函是基于微正则系综的,而与旧的基于巨正则系综的自由能泛函有很大的不同。对于玻璃化转变,我们进行了一种新的分子动力学模拟,其中一些粒子被固定在空间中(不允许移动)。这些固定粒子对稠密液体中的弛豫动力学有重要的影响,并由此得到了动力学关联区域大小的定量信息,最后给出了矩形盒中两粒子系统的精确解。我们讨论了这个简单系统的货车德瓦耳斯不稳定性和慢动力学解析。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Munakata: "Dynamical Aspects of an Adiabatic Piston"Phys. Rev. E. 64. 036119-1-036119-4 (2001)
T.Munakata:“绝热活塞的动力学方面”Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Munakata: "Temperature control for simulated annealing"Phys. Rev. E. 64. 046127-1-5 (2001)
T. Munakata:“模拟退火的温度控制”Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
岡本秀樹: "Dynamical properties of a low-dimensional chaotic reservor-simulation and GLE interpretation"J.Phys.Soc.Japan. 69,11. 3481-3484 (2000)
Hideki Okamoto:“低维混沌储层的动态特性模拟和 GLE 解释”J.Phys.Soc.Japan 69,11 3481-3484 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Munakata: "Temperature control for simulated annealing"Phys. Rev. E. 64. 046127-1-046127-5 (2001)
T.Munakata:“模拟退火的温度控制”Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Munakata: "Dynamical Aspects of an Adiabatic Piston"Phys. Rev. E. 64. 036119-1-4 (2001)
T. Munakata:“绝热活塞的动力学方面”Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MUNAKATA Toyonori其他文献

MUNAKATA Toyonori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MUNAKATA Toyonori', 18)}}的其他基金

self-tuning and stochastic resonance-theory and application of information processing with use of noise
自调节和随机共振-利用噪声进行信息处理的理论与应用
  • 批准号:
    18560060
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Adaptive Monte-Carlo Method.
自适应蒙特卡罗方法的发展。
  • 批准号:
    10650063
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic Density-functional-theory approach to Molecular Liquids
分子液体的动态密度泛函理论方法
  • 批准号:
    08650077
  • 财政年份:
    1996
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of glass-transition type Al alloy based microencapsulated phase change material
玻璃化转变型铝合金基微胶囊相变材料的研制
  • 批准号:
    23KJ0050
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Searching for dry-preservative condition by glass-transition of plant cells and challenge for new preservation technique for genetic resources
植物细胞玻璃化转变寻找干燥保存条件及挑战遗传资源保存新技术
  • 批准号:
    23K05219
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermodynamic study of the glass transition in a lattice gas model
晶格气体模型中玻璃化转变的热力学研究
  • 批准号:
    22K13968
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Why can microorganisms withstand drying? Elucidation of drying adaptation mechanism by glass transition of microbial cells
为什么微生物能经受干燥?
  • 批准号:
    21H04710
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Magnetically Activated Glass Transition Switching Nanocomposites for On-demand Drug Delivery
用于按需药物输送的磁激活玻璃化转变开关纳米复合材料
  • 批准号:
    565887-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Crystallization and glass transition of liquid crystals
液晶的结晶和玻璃化转变
  • 批准号:
    20F18774
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dielectric alpha process in glass transition revisited
重新审视玻璃化转变中的介电阿尔法过程
  • 批准号:
    19K03759
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了