Differential Equations on Manifolds and Their Singularities
流形及其奇点的微分方程
基本信息
- 批准号:13640059
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator Kawakami has studied the following. In the first year:He and Prof. Tsuchiya (Kanazawa Univ.) proved that any Cr,α manifold (manifold pair) has a C∞ smoothing by using a method of J.R. Munkres.He and Dr. Murayama (Shobi Univ.) and others studied about a means of giving teaching-materials of mathematics through a computer network.In the second year:He and Prof. Tsuchiya (Kanazawa Univ.) have studied a generalization of "Kurt Bryant and Lester F. caudill Jr., Inverse Problem 14 1429-1453 (1998)". They proved that the data in a finite time-interval uniquely determine the shape of the back surfice.He conjectured that the Gauss-Bonnet formula gives a necessary and sufficient condition for the existence of a metric deformation to obtain a positive/negative Gaussian curvature on a disk. He gave a partial answer of the conjecture.Investigator Kobayashi worked on studying the curious relation of generic maps to their discriminants. The main results in the first year are;a characterization of the 'folding into four' action in general dimensions by the discriminant of the folding map,finding of an infinite to one correspondence of maps of a fixed closed 4-manifolds to their discriminants,providing a family of discrimiants of stable maps of closed manifolds.Those in the second year are;a characterization of plane curves which are the critical value set of a generic projection of a closed surface into the plane;study of planar projections of sphere bundles over spheres.
首席调查员Kawakami研究了以下内容。第一年:他和土屋教授(金泽大学)利用J. R. Munkres.他和Murayama博士(Shobi大学)第二年:他和土屋教授(金泽大学)在日本东京大学(东京大学)进行了数学教材的研究。研究了“库尔特·布莱恩特和莱斯特·F.小考迪尔,反问题14 1429-1453(1998)"。他们证明了在有限时间间隔内的数据唯一地决定了后表面的形状。他证明了高斯-博内公式给出了一个度量变形存在的充分必要条件,以获得一个正/负高斯曲率的磁盘。他给出了部分答案的猜想。调查员小林工作研究的好奇关系的一般地图,他们的判别式。第一年的主要结果是:用折叠映射的判别式刻画了一般维的“折叠成四”作用,找到了固定闭4-流形的映射与其判别式的无穷对一对应,给出了闭流形稳定映射的一族判别式。一种平面曲线的特征,它是一个闭曲面在平面上的一般投影的临界值集;研究球面丛在球面上的平面投影。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hajime Kawakami: "C∞ Smoothing of Manifolds of Fractional Order and Basic Properties of the Whitney Topology on the Spaces of Holder Maps"International Journal of Applied Mathematics. 6-3. 319-340 (2001)
Hajime Kawakami:“分数阶流形的 C∞ 平滑和持有人映射空间上惠特尼拓扑的基本属性”国际应用数学杂志 6-3(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hajime Kawakami: "C^<∞> Smoothing of Manifolds of Fractional Order and Basic Properties of the Whitney Topology on the Spaces of Holder Maps"International Journal of Applied Mathematics. 6. 319-340 (2001)
Hajime Kawakami:“C^<∞> 分数阶流形的平滑和持有人映射空间上惠特尼拓扑的基本性质”国际应用数学杂志 6. 319-340 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hajime Kawakami: "C^∞ Smoothing of Manifolds of Fractional Order and Basic Properties of the Whitney Topology on the Spaces of Holder Maps"International Journal of Applied Mathematics. 6・3. 319-340 (2001)
Hajime Kawakami:“Holder 映射空间上分数阶流形的 C^∞ 平滑和惠特尼拓扑的基本属性”国际应用数学杂志 6・3(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAKAMI Hajime其他文献
KAWAKAMI Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAKAMI Hajime', 18)}}的其他基金
POC fluxes estimated from the radioisotopes in the mesopeIagic ocean.
根据中层海洋中的放射性同位素估算的 POC 通量。
- 批准号:
22710025 - 财政年份:2010
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on estimation of the shape of unknown portions of a domain varying with time and on algorithms for reconstruction of the shape
域中未知部分随时间变化的形状估计及形状重建算法研究
- 批准号:
21540160 - 财政年份:2009
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on an estimation problem for the shape of time-varying domain via parabolic equations
时变域形状的抛物方程估计问题研究
- 批准号:
18540155 - 财政年份:2006
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An estimation problem for the shape of a domain via diffusion equations
通过扩散方程估计域形状的问题
- 批准号:
15540150 - 财政年份:2003
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)