Research on an estimation problem for the shape of time-varying domain via parabolic equations

时变域形状的抛物方程估计问题研究

基本信息

  • 批准号:
    18540155
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Our research program is concerned with an inverse problem of determining the shape of some time-varying unknown portion of the boundary of a multi-dimensional domain via a parabolic equation on the domain. Considering practical applications, we treat such a domain under weak regularity conditions and a parabolic operator of general type, and set a mixed boundary condition: Dirichlet's condition is imposed on the unknown portion and Robin's one on the other portions.As an observable data, we take the boundary value on an accessible portion of the boundary of a solution to the parabolic equation. The correspondence between data and domains is generally nonlinear. Thus we first considered a linearized problem; then, for the shape of the unknown portion, we proved a unique identification theorem and provided a reconstruction algorithm from the data We also verified the convergence and stability of the algorithm. The result was reported in the symposium "Inverse Problems in Applied Sciences -towards breakthrough-", and published in the journal " Inverse Problems".In the last term of the project, we considered the primary (not linearized) problem and obtained a unique identification theorem as follows. We first assume that the domain is Lipschitz and that the parabolic operator is non-degenerate and has bounded Lipschitz continuous coefficients. Secondarily we assume that the Robin boundary value does not vanish somewhere on the accessible portion at every observation time. Moreover we assume that the shape of the domain is known at the initial observation time or that the initial value of the solution is zero. Then, in the observation period, the shape of the unknown portion is uniquely determined by the data. The result was reported in the Annual Meeting of the Mathematical Society of Japan this spring. We are preparing to publish the details of the result.
我们的研究程序涉及通过区域上的抛物方程来确定多维区域的边界的某个时变未知部分的形状的反问题。考虑到实际应用,我们在弱正则性条件下和一般类型的抛物型算子下处理这类区域,并设置混合边界条件:在未知部分施加Dirichlet条件,在另一部分施加Robin条件,作为可观测数据,取抛物方程解的边界的可达部分的边值。数据和域之间的对应关系通常是非线性的。因此,我们首先考虑了一个线性化问题;然后,对于未知部分的形状,我们证明了一个唯一的识别定理,并给出了一个由数据重建的算法,并验证了算法的收敛和稳定性。这一结果发表在《应用科学中的逆问题--走向突破》研讨会上,并发表在《逆问题》杂志上。在该项目的最后一学期,我们考虑了主要的(未线性化的)问题,得到了一个唯一的识别定理如下。我们首先假设区域是Lipschitz的,抛物算子是非退化的,并且具有有界的Lipschitz连续系数。其次,我们假设Robin边值不会在每个观测时刻都消失在可达部分的某处。此外,我们假设在初始观测时区域的形状是已知的,或者解的初值为零。然后,在观察期内,由数据唯一地确定未知部分的形状。这一结果发表在今年春天召开的日本数学学会年会上。我们正准备公布结果的细节。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation problem for the shape of a domain based on parabolic equations
基于抛物方程的域形状估计问题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime Kawakami;Yosuke Moriyama and Masaaki Tsuchiya
  • 通讯作者:
    Yosuke Moriyama and Masaaki Tsuchiya
An estination problem for the shape of a domain varying with time viaparablic equations
通过抛物方程求解域形状随时间变化的估计问题
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime;Kawakami;Yosuke;Moriyama;Masaaki;Tsuchiya
  • 通讯作者:
    Tsuchiya
Estimation problem for the shape of a domain based on parabolicequations
基于抛物方程的域形状估计问题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime;Kawakami;Yosuke;Moriyama;Masaaki;Tsuchiya
  • 通讯作者:
    Tsuchiya
An estimation problem for the shape of a domain varying with time via parabolic equations
通过抛物线方程求解域形状随时间变化的估计问题
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime Kawakami;Yosuke Moriyama and Masaaki Tsuchiya
  • 通讯作者:
    Yosuke Moriyama and Masaaki Tsuchiya
時空変形する領域の形状に対する放物型方程式に基づく推定問題
基于抛物线方程的时空变形区域形状估计问题
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime Kawakami;Yosuke Moriyama and Masaaki Tsuchiya;Hajime Kawakami 他;河上 肇・土谷 正明
  • 通讯作者:
    河上 肇・土谷 正明
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAKAMI Hajime其他文献

KAWAKAMI Hajime的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAKAMI Hajime', 18)}}的其他基金

POC fluxes estimated from the radioisotopes in the mesopeIagic ocean.
根据中层海洋中的放射性同位素估算的 POC 通量。
  • 批准号:
    22710025
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on estimation of the shape of unknown portions of a domain varying with time and on algorithms for reconstruction of the shape
域中未知部分随时间变化的形状估计及形状重建算法研究
  • 批准号:
    21540160
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An estimation problem for the shape of a domain via diffusion equations
通过扩散方程估计域形状的问题
  • 批准号:
    15540150
  • 财政年份:
    2003
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential Equations on Manifolds and Their Singularities
流形及其奇点的微分方程
  • 批准号:
    13640059
  • 财政年份:
    2001
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了