An estimation problem for the shape of a domain via diffusion equations
通过扩散方程估计域形状的问题
基本信息
- 批准号:15540150
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theme of our research is an inverse problem of determining the shape of some unknown portion of the boundary of a domain from measurements of some data for a solution to the heat equation on the domain. Bryan-Caudill [BC] (Inverse Problems, 1998) treated the problem of the case of Neumann boundary condition. And later, Y.Moriyama [M] (master thesis of Kanazawa Univ., 2002) studied the case of a mixed boundary condition. This condition fits physical phenomena well, and we also study the case of this condition. In [BC] and [M], the domain is-a rectangular solid, and the coefficients and free terms of the equation are constants. On the other hand, in our research, the domain is a direct product of a Lipschitz domain and an interval, and the coefficients and free terms of the equation are Lipschitz continuous functions. The results of our research are as follows :(a)Based on [M], we got an energy estimate of weak solutions of a mixed boundary value problem of a heat equation on a Lipschitz domain.(b)In the same way as [BC] and [M], we linearized the inverse problem. We carried out it in a framework of weak forms, and gave the linearization by the Gateaux derivative. This enables us to treat the case of Lipschitz domains. In the proof we used the energy estimate above.(c)For the resulting linear problem above, we proved the reconstruction theorem which claims that we can uniquely determine unknown shape from given data. We showed some denseness of the range of a Dirichlet to Neumann map, and use it in the proof of the reconstruction theorem.(d)Under some assumption of unknown shape, we gave a method of approximate reconstruction of unknown shape and an estimation of the error.
我们的研究的主题是一个反问题,确定的形状的一些未知部分的边界的一个域从测量的一些数据的解决方案的热方程的域。Bryan-Caudill [BC](InverseProblems,1998)处理了Neumann边界条件情形的问题。后来,Y.Moriyama [M](金泽大学硕士论文,2002)研究了混合边界条件的情况。这个条件很好地符合物理现象,我们也研究了这个条件的情况。在[BC]和[M]中,区域是长方体,方程的系数和自由项是常数。另一方面,在我们的研究中,区域是Lipschitz区域和区间的直积,并且方程的系数和自由项是Lipschitz连续函数。(a)在[M]的基础上,得到了Lipschitz区域上一类热传导方程混合边值问题弱解的能量估计。(b)In与[BC]和[M]一样,我们将逆问题线性化。我们在弱形式的框架下实现了它,并给出了线性化的Gateaux导数。这使我们能够处理Lipschitz域的情况。在证明中,我们使用了上面的能量估计。(c)对于上述线性问题,我们证明了重构定理,该定理声称我们可以从给定的数据中唯一地确定未知形状。我们证明了Dirichlet到Neumann映射值域的稠密性,并将其用于重构定理的证明。(4)在未知形状的假设下,给出了一种近似重构未知形状的方法,并给出了误差估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAKAMI Hajime其他文献
KAWAKAMI Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAKAMI Hajime', 18)}}的其他基金
POC fluxes estimated from the radioisotopes in the mesopeIagic ocean.
根据中层海洋中的放射性同位素估算的 POC 通量。
- 批准号:
22710025 - 财政年份:2010
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on estimation of the shape of unknown portions of a domain varying with time and on algorithms for reconstruction of the shape
域中未知部分随时间变化的形状估计及形状重建算法研究
- 批准号:
21540160 - 财政年份:2009
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on an estimation problem for the shape of time-varying domain via parabolic equations
时变域形状的抛物方程估计问题研究
- 批准号:
18540155 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential Equations on Manifolds and Their Singularities
流形及其奇点的微分方程
- 批准号:
13640059 - 财政年份:2001
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
- 批准号:
23K03179 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
- 批准号:
19K14569 - 财政年份:2019
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fast Solution of the Heat Equation in Additively Manufactured Metals
增材制造金属中热方程的快速求解
- 批准号:
2136342 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Studentship
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
- 批准号:
23740128 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The research of transformations which preserve the solutions of the heat equation and the wave equation.
保留热方程和波动方程解的变换研究。
- 批准号:
22540169 - 财政年份:2010
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An asymptotic expansion of the fundamental solution to the heat equation and its applications
热方程基本解的渐近展开及其应用
- 批准号:
21540194 - 财政年份:2009
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Inverse Problems for the Heat equation Based on the Theory of Stochastic Control
基于随机控制理论的热方程反问题研究
- 批准号:
16540100 - 财政年份:2004
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The heat equation on symmetric spaces of noncompact type
非紧型对称空间上的热方程
- 批准号:
170653-1998 - 财政年份:2001
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
The heat equation on symmetric spaces of noncompact type
非紧型对称空间上的热方程
- 批准号:
170653-1998 - 财政年份:2000
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
The heat equation on symmetric spaces of noncompact type
非紧型对称空间上的热方程
- 批准号:
170653-1998 - 财政年份:1999
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual