Topology related to Valuation problems and Numerical Computations
与估值问题和数值计算相关的拓扑
基本信息
- 批准号:13640067
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider the energy functionals E on spaces consisting of all smooth maps from a Riemann surface to complex projective spaces. In this case, it is very important to study the spaces consisting of all critical points of E.K.Yamaguchi suceeds to define a finite dimensional homotopy configuration space models from a Riemann surface of genus g into a complex projective space for g>O. He also obtains a similar result for the space of algebraic maps between real projective spaces. Moreover, he shows that a homotopy asymptic stability theorem holds for such spaces of algebraic maps. Kida studies elliptic curves and algebraic field extensions associated to certain maps on algebraic torus. As an application he obtains an easy method for checking prime numbers. M.Ohno studied the vector bundles over non-singular projective varieties and investigated them from the point of view of "nef value". Y.Yamada studied the topology of 4-manifolds and obtained several results related to Gluck surgery.
考虑由黎曼曲面到复射影空间的所有光滑映射组成的空间上的能量泛函E。在这种情况下,研究由所有临界点组成的空间是非常重要的。E.K.Yamaguchi成功地定义了从g属的Riemann曲面到g b> O的复射影空间的有限维同伦组态空间模型。对于实射影空间之间的代数映射空间,他也得到了类似的结果。此外,他还证明了这种代数映射空间的一个同伦渐近稳定性定理。Kida研究了与代数环面上某些映射相关的椭圆曲线和代数域扩展。作为一种应用,他得到了一种检验素数的简便方法。m.o ohno研究了非奇异投影簇上的向量束,并从“nef值”的角度进行了研究。Y.Yamada研究了4流形的拓扑结构,并获得了一些与Gluck手术相关的结果。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Yamaguchi: "Mod p truncated configuration spaces"J.Math.Soc.Japan. 56-1. 193-199 (2004)
K.Yamaguchi:“Mod p 截断配置空间”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Yamaguchi: "Configuration space models for spaces of maps from a Riemann surface to complex projective space"Publ.Res.Inst.Math.Soc.. 39-3. 535-543 (2003)
K.Yamaguchi:“从黎曼曲面到复射影空间的映射空间的配置空间模型”Publ.Res.Inst.Math.Soc.. 39-3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Yamaguchi: "Universal coverings of spaces of holomorphic maps"Kyushu J. Math.. 56-2. 381-389 (2002)
K.Yamaguchi:“全纯映射空间的通用覆盖”Kyushu J. Math.. 56-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kohhei Yamaguchi: "Spaces of holomorphic maps with bounded multiplicity"Quart. J. Math.. 52. 249-259 (2001)
Kohhei Yamaguchi:“具有有限多重性的全纯映射空间”夸脱。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kozlowski, K.Yamaguchi: "Spaces of holomorphic maps between complex projective spaces of degree one"Topology and Its Applications. 132-2. 139-145 (2003)
A.Kozlowski、K.Yamaguchi:“一级复射影空间之间的全纯映射空间”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAGUCHI Kohei其他文献
YAMAGUCHI Kohei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAGUCHI Kohei', 18)}}的其他基金
Elucidation of re-deterioration mechanism of RC members damaged by the Kumamoto earthquake with optical measurement method
用光学测量法阐明熊本地震受损钢筋混凝土构件的再劣化机制
- 批准号:
17H06960 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Establishment of human Sertoli cell line and analysisof molecular mechanism of testicular dysfunction induced by anticancer drug
人支持细胞系的建立及抗癌药物引起睾丸功能障碍的分子机制分析
- 批准号:
23791757 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
- 批准号:
544920-2019 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of the continuations and the spans of an open Riemann surface in view of the thory of functions of several complex variables
从多复变量函数理论研究开黎曼曲面的延拓和跨度
- 批准号:
15K04930 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the geometry of a Riemann surface underlying a virtual turning point
虚拟转折点下黎曼曲面的几何
- 批准号:
20540150 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Continuations of a Riemann surface and dynamics of viscos fluid --- study of conformal embeddings and associated Poiseuille flow
黎曼曲面的延拓和粘性流体动力学——共形嵌入和相关泊肃叶流的研究
- 批准号:
20540174 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface
黎曼曲面上有界解析函数代数的泛函分析研究
- 批准号:
16540132 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the theory of conformal embeddings of a Riemann surface focused on the hyperrbolic metric and hydrodynamics of viscous fluids
黎曼曲面共形嵌入理论研究,重点关注粘性流体的双曲度量和流体动力学
- 批准号:
16540157 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0222387 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
- 批准号:
12640147 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0071862 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant