Asymptotic behavior of solutions of a certain quasi non-linear operator and its application to geometric function theory
某拟非线性算子解的渐近行为及其在几何函数论中的应用
基本信息
- 批准号:13640169
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to study asymptotic behaviour of (sub-) solutions of a certain quasi non-linear operator P on a complete Riemannian manifold (M, g). Here P is either the Laplacian or the mean curvature operator which is the most interesting case. Several topics related to maximum principle for solutions of that operator have been studied. We could show the generalized maximum principle for such an operator P without any Ricci curvature condition of (M, g). Our method depends only on some volume growth condition of that manifold. From the principle we can induce several interesting results related to (1) uniqueness of solutions of the scaler curvature equation, (2) Liouville type theorem for harmonic maps, (3) isometric property of conformal transformations preserving scaler curvature and (4) value distribution of minimal immersions of complete manifolds, which contain almost all known results up to now in Riemannian geometry. Furthermore we studied a growth property of L^p-integrals of subharmonic functions on geodesic spheres on (M, g), and obtained an optimal growth estimate of those integrals. This result is also related to the maximum principle on complete manifolds. From this estimate we can yield a very simple and function theoretic proof for (M, g) to be parabolic, and get several results related to the problem (1)〜(4).
本课题的目的是研究一类拟非线性算子P在完全黎曼流形(M, g)上的(次)解的渐近行为。这里P要么是拉普拉斯算子,要么是平均曲率算子这是最有趣的情况。本文研究了该算子解的极大值原理。我们可以给出这样一个算子P的广义极大原理,而不需要(M, g)的任何Ricci曲率条件。我们的方法只依赖于流形的体积增长条件。从这个原理我们可以归纳出几个有趣的结果,涉及到(1)标量曲率方程解的唯一性,(2)调和映射的Liouville型定理,(3)保标量曲率的共形变换的等距性质,以及(4)完全流形的最小浸没值分布,这些结果包含了迄今为止黎曼几何中几乎所有已知的结果。进一步研究了(M, g)上测地线球上次调和函数的L^p积分的增长性质,得到了这些积分的最优增长估计。这一结果也与完全流形上的极大原理有关。从这个估计我们可以得到(M, g)是抛物线的一个非常简单的函数理论证明,并得到与问题(1)~(4)有关的几个结果。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mabuchi, T.: "A theorem of Calabi-Matsusima's type"Osaka J. Math. 39. 49-57 (2002)
Mabuchi, T.:“卡拉比-松岛型定理”Osaka J. Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kensho Takegoshi: "Strongly p-subharmonic functions and volume growth property of complete Riemannian manifolds"Osaka J. Math.. 38. 839-850 (2001)
Kensho Takegoshi:“完全黎曼流形的强 p 次调和函数和体积增长性质”Osaka J. Math.. 38. 839-850 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koiso, N.: "Convergence towards an elastica in a Riemannian manifold"Osaka J. Math. 37. 467-487 (2000)
Koiso, N.:“黎曼流形中的弹性收敛”Osaka J. Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Norihito Koiso: "Convergence towards an elastica in a Riemannian manifold"Osaka J. Math.. 37. 467-487 (2000)
小矶纪人:“黎曼流形中的弹性收敛”Osaka J. Math.. 37. 467-487 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takegoshi, K.: "A note on divergence of LP-integrals of sub-harmonic functions and its applications"Proceedings of the AMS. (掲載決定). (2003)
Takegoshi, K.:“关于次谐波函数的 LP 积分的散度及其应用的说明”AMS 论文集(2003 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEGOSHI Kensho其他文献
TAKEGOSHI Kensho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
- 批准号:
15K04851 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
- 批准号:
24540215 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
- 批准号:
21540222 - 财政年份:2009
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
- 批准号:
19540221 - 财政年份:2007
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces
狄利克雷空间与格罗莫夫-豪斯多夫极限空间上的调和映射分析
- 批准号:
13640220 - 财政年份:2001
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
9706855 - 财政年份:1997
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
S^2-値のharmonic mapの正則性について
关于S^2值的调和图的规律性
- 批准号:
04740074 - 财政年份:1992
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)