Analysis of partial differential equations arising in Material Science
材料科学中出现的偏微分方程分析
基本信息
- 批准号:13640201
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(I) Non-trivial state solutions to the Ginzburg-Landau equation with magnetic effect are studied. Particularly, in a non-uniform thin 3-d domain, pattern is constructed (Jimbo with Morita). In 2-d convex domain, it is proved that no pattern formation exists (Jimbo with P. Sternberg).(ii) Vortex motion in nonstationary Ginzburg-Landan equation (without magnetic effect) is studied. The reduced ODEs of vortex motion obtained by F.H. Lin and Jerrard-Soner are rewrittened in comprehensive form. The dynamics in the Neumann B.C. case is studied (Jimno and Morita).(iii) The perturbation of eigenvalue problem of elliptic operator with discontinuous coefficients (or vaiable coefficients (or vaiable coefficients and perforated domain) is studied (Jimbo with Kosugi).(iv) The phase transition boundary arising in the Allen-Cahn equation (with small diffusion coefficients) is studied. The regularity and the geometic property of the free boundaries are investigated (Tonegawa).(v) The surface evolution equation driven by anisotropic effect of curvature (existence of solution and properties) is studied (Tonegawa).(vi) Minimal surface problem with free boundary is studied. The hyperbolic evolution equation with free boundary is studied (Omata).Numerical analysis are also done.(vii) The vortex motion arising in the hyperbolic Ginzburg-Landau equation is studied by computational method (Omata).
(1)研究了具有磁效应的Ginzburg-Landau方程的非平凡状态解。特别地,在非均匀的薄三维域中,构造了模式(Jimbo和Morita)。在二维凸域上,证明了不存在模式形成(Jimbo with P. Sternberg)。(ii)研究了非平稳Ginzburg-Landan方程(不含磁效应)中的涡旋运动。本文以综合形式改写了F.H. Lin和gerard - soner得到的涡运动的简化ode。研究了Neumann bc案例的动力学(Jimno和Morita)。(iii)研究了具有不连续系数(或可变系数(或可变系数和穿孔区域)的椭圆算子的特征值问题的摄动(Jimbo with Kosugi)。(iv)研究了Allen-Cahn方程(小扩散系数)中出现的相变边界。研究了自由边界的正则性和几何性质(Tonegawa)。(v)研究了曲率各向异性效应驱动的表面演化方程(解的存在性和性质)(Tonegawa)。(六)研究了具有自由边界的极小曲面问题。研究了具有自由边界的双曲演化方程(Omata)。并进行了数值分析。(7)用计算方法(Omata)研究了双曲型金兹堡-朗道方程中涡的运动。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Tonegawa: "Phase field model with a variable chemical potential"Royal Soc. Edingburgh Sec. A. 132. 993-1019 (2002)
Y.利根川:“具有可变化学势的相场模型”皇家学会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Morita: "Vortex dynamics fot the Ginzburg-Landau equation with Neumann condition"Mathods and applcations to Analysisi. 8. 451-478 (2001)
Y. Morita:“具有诺伊曼条件的 Ginzburg-Landau 方程的涡动力学”分析方法和应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Omata: "A Numerical Approach to the Asymptotic Behavior of Solutions of a One-Dimensional Free Boundary Problem of Hyperbolic Type"JJIAM. 18. 43-58 (2001)
S. Omata:“双曲型一维自由边界问题解渐近行为的数值方法”JJIAM。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Omata: "Numerical computations for motion of vortices governed by a hyperbolic Ginzburg-Landaw system"Nonlinear Anal. TMA. 51. 67-77 (2002)
S.Omata:“双曲金兹堡-朗道系统控制的涡流运动的数值计算”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Omata: "A numerical approach to the eikonal equation"Nonlinear Anal. TMA. 47. 3795-3802 (2001)
S.Omata:“方程方程的数值方法”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIMBO Shuichi其他文献
JIMBO Shuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIMBO Shuichi', 18)}}的其他基金
Singular or extreme shaped doman and elliptic system
奇异或极端形状的域和椭圆系统
- 批准号:
16K05218 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Eigenvalue problem of the Lame operator on a domain with a multi- structure
多结构域上Lame算子的特征值问题
- 批准号:
22540216 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral analysis of elliptic operators with singular domain deformation and coefficients degeneration
具有奇异域变形和系数退化的椭圆算子的谱分析
- 批准号:
17340042 - 财政年份:2005
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Study of singularity of the equations of fluids and stochasticity of turbulence from the view point of vortex motion
从涡运动的角度研究流体方程的奇异性和湍流的随机性
- 批准号:
19H00641 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Experimental investigations for the vortex motion on the local quenching and recovery mechanisms by nozzle offsetting opposite flow
喷嘴偏置逆流涡运动对局部淬火和恢复机制的实验研究
- 批准号:
17K06208 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of precise control and observation of vortex motion and their application to non-equilibrium science
涡运动精确控制与观测的发展及其在非平衡科学中的应用
- 批准号:
15K13516 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Controlling vortex motion and THz radiation in high temperature superconductors.
控制高温超导体中的涡旋运动和太赫兹辐射。
- 批准号:
EP/D072581/1 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Fellowship
Low and high TC superconductors, ichystereus, flux cutting and vortex motion phenomena
低TC和高TC超导体、磁滞、磁通切割和涡流运动现象
- 批准号:
5033-2001 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Low and high TC superconductors, ichystereus, flux cutting and vortex motion phenomena
低TC和高TC超导体、磁滞、磁通切割和涡流运动现象
- 批准号:
5033-2001 - 财政年份:2001
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Classical and high T superconductors, A.C. losses, flux cutting and vortex motion phenomena
经典和高温超导体、交流损耗、磁通切割和涡流运动现象
- 批准号:
5033-2000 - 财政年份:2000
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Classical and high T, superconductors, A.C. losses, flux cutting and vortex motion phenomena
经典和高 T、超导体、交流损耗、磁通切割和涡流运动现象
- 批准号:
5033-1996 - 财政年份:1999
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Classical and high T, superconductors, A.C. losses, flux cutting and vortex motion phenomena
经典和高 T、超导体、交流损耗、磁通切割和涡流运动现象
- 批准号:
5033-1996 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Classical and high T, superconductors, A.C. losses, flux cutting and vortex motion phenomena
经典和高 T、超导体、交流损耗、磁通切割和涡流运动现象
- 批准号:
5033-1996 - 财政年份:1997
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual