Identification of sound source position or direction based on the statistical independecy in an actual sound environment

基于实际声环境中的统计独立性识别声源位置或方向

基本信息

  • 批准号:
    13650472
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

Sound source localization problem has been important in various actual fields of acoustics and many approaches have been developed e.g., MUSIC, etc. Most of them utilize only the lower order statistics of observations such as a covariance matrix and the orthogonality (or uncorrelation) between the objective signal and noise. Recently , Independent Component Analysis (ICA) becomes popular to solve a blind signal separation problem where independent sources are mixed and then measured by multiple sensors. The ICA of complex signals has been also proposed for a case when observations have time differences between source signals or are affected by system (room etc.).In this research, some trials of estimating the sound source positions or directions are proposed from various viewpoints. In particular, most of them are based on the statistical independency between source signals or between the source signal and an additional noise. The results we obtained in 2001 and 2002 are listed below.[ … More 2001 year]: As the first step of research, the correlation method is introduced to calculate the delay time between observations at each microphone and then to estimate the sound direction. In the second approach, MUSIC method and Kalman filter are employed, respectively, to estimate the direction of source and to detect the amplitude information for sound source localization.The third method is a trial of estimating the time delays or the distances between receivers and sound sources based on the complex ICA, especially for the mixed observations with time delays. Further, we can easily construct an inverse filter to separate the (over-all) real mixed signals using the parameters estimated by ICA, while the usual complex ICA required synthesizing all frequency components. Finally, through fundamental simulation, we demonstrate the high-quality blind separation as well as the validity for the estimation of the source parameters.[2002 year]: Following to the fundamental consideration on the sound source localization problem in 2001, the extensive simulation makes it clear that the proposed method also enables us to find the directions of arrival. These results have been presented in domestic or international conferences. Less
声源定位问题在声学的各种实际领域中一直是重要的,并且已经开发了许多方法,它们中的大多数仅利用观测值的低阶统计量,例如协方差矩阵和目标信号与噪声之间的正交性(或不相关性)。近年来,独立分量分析(伊卡)成为解决盲信号分离问题的热门,其中独立的源混合,然后由多个传感器测量。对于观测值在源信号之间具有时间差或受系统(房间等)影响的情况,也提出了复信号的伊卡。在本研究中,从不同的角度提出了一些估计声源位置或方向的尝试。特别地,它们中的大多数是基于源信号之间或源信号与附加噪声之间的统计独立性。我们在2001年和2002年取得的成果如下。[ ...更多信息 2001年]:作为研究的第一步,相关方法被引入到计算在每个麦克风的观测之间的延迟时间,然后估计声音的方向。第二种方法分别采用MUSIC方法和Kalman滤波方法估计声源方向和检测声源幅度信息进行声源定位;第三种方法是基于复伊卡方法估计时延或声源与接收机之间的距离,特别是对于具有时延的混合观测值。此外,我们可以很容易地构造一个逆滤波器分离的(整体)真实的混合信号使用伊卡估计的参数,而通常的复杂伊卡需要综合所有的频率成分。最后,通过基本的仿真实验,验证了该方法的高质量盲分离效果以及对源信号参数估计的有效性。[2002年份]:继2001年对声源定位问题的基本考虑之后,广泛的仿真清楚地表明,所提出的方法也使我们能够找到到达方向。这些成果已在国内或国际会议上发表。少

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中迫 昇, 小倉 久直, 佐久間 有子: "ブラインド分離による時間差混合信号からの複数音源の推定と逆フィルタを用いた分離・再生"平成14年度電気関係学会関西支部連合大会講演論文集. G349-G349 (2002)
Noboru Nakasako、Hisanao Ogura、Yuko Sakuma:“使用逆滤波器通过盲分离和分离/再生来估计时差混合信号中的多个声源”2002 年日本电气工程师协会关西分会 G349-G349 会议记录。 2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisanao Ogura, Noboru Nakasako and Yuko Sakuma: "Sound source localization from time-shifted Mixtures by complex blind separation and inverse filter design for separation/reproduction - Simulation on speech data"Proc. of the 2003 IEICE General Conf.. S13-
Hisanao Ogura、Noboru Nakasako 和 Yuko Sakuma:“通过复杂的盲分离和用于分离/再现的逆滤波器设计对时移混合物进行声源定位 - 语音数据模拟”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
永座 強, 中迫 昇: "MUSIC法とカルマンフィルタによる音源位置の推定"第10回計測自動制御学会中国支部学術講演会講演論文集. 126-127 (2001)
Tsuyoshi Nagaza,Noboru Nakasako:“使用MUSIC方法和卡尔曼滤波器估计声源位置”中国仪器仪表与控制工程师学会第十届学术会议论文集126-127(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Noboru Nakasako, Hisanao Ogura and Yuko Sakuma: "Sound source identification for multiple-sources from time-shifted mixtures based on blind separation and separation/reproduction by inverse filter"Proc. United Conf. of Societies of Kansai-branch Related t
Noboru Nakasako、Hisanao Ogura 和 Yuko Sakuma:“基于盲分离和逆滤波器分离/再现的时移混合物中的多源声源识别”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ogura, N.Nakasako, Y.Sakuma: "Blind separation of mixed speeches with time delays --Estimation of source parameters and separation by an inverse filter"Proceedings of 2002 International Symposium on Intelligent Signal Processing and Communication System
H.Ogura、N.Nakasako、Y.Sakuma:“带时间延迟的混合语音的盲分离——源参数估计和逆滤波器分离”2002年智能信号处理与通信系统国际研讨会论文集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKASAKO Noboru其他文献

NAKASAKO Noboru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKASAKO Noboru', 18)}}的其他基金

Acoustic distance measurement method measurable from 0 m and applicable to movement of target or microphone
声学距离测量方法,可从0米开始测量,适用于目标或麦克风的移动
  • 批准号:
    24560533
  • 财政年份:
    2012
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of rear sonar using exhaust sound of automobile
利用汽车排气声的后声纳的研制
  • 批准号:
    21560454
  • 财政年份:
    2009
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical analysis of sound reduction property in one-dimensional random duct and its application to noise control
一维随机风道消声特性理论分析及其在噪声控制中的应用
  • 批准号:
    17560403
  • 财政年份:
    2005
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantification of assimilation condition for estuary with ensemble Kalman filter
集合卡尔曼滤波器量化河口同化条件
  • 批准号:
    21K14255
  • 财政年份:
    2021
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Real-time hysteresis identification in controlled structures based on restoring force reconstruction and Kalman filter
基于恢复力重构和卡尔曼滤波器的受控结构实时滞后识别
  • 批准号:
    21K14284
  • 财政年份:
    2021
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing an Ensemble Kalman Filter calibration and data assimilation (EnC/DA) approach for integrating geodetic and remote sensing data into a global hydrological model
开发集成卡尔曼滤波器校准和数据同化 (EnC/DA) 方法,将大地测量和遥感数据集成到全球水文模型中
  • 批准号:
    397590167
  • 财政年份:
    2018
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Units
Controlling Robot-Assisted Locomotion with Extended Kalman Filter Estimates of Phase and Activity
使用扩展卡尔曼滤波器估计相位和活动来控制机器人辅助运动
  • 批准号:
    10328286
  • 财政年份:
    2018
  • 资助金额:
    $ 0.83万
  • 项目类别:
Investigating Kalman filter for battery SoH estimation
研究用于电池 SoH 估计的卡尔曼滤波器
  • 批准号:
    507447-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Developing a Stabilized Ensemble Kalman Filter for integrating daily GRACE/GRACE-FO data into process models (S-ENKF)
开发稳定的集成卡尔曼滤波器,用于将日常 GRACE/GRACE-FO 数据集成到过程模型中 (S-ENKF)
  • 批准号:
    329114959
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grants
Development of Nonlinear Kalman Filter without a Prior Information for Noise
无先验噪声信息的非线性卡尔曼滤波器的研制
  • 批准号:
    16K18128
  • 财政年份:
    2016
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High accurate flow field estimation analysis based on the Kalman filter FEM for selection of tidal stream power generator locations
基于卡尔曼滤波器有限元的高精度流场估算分析用于潮汐流发电机选址
  • 批准号:
    15K05786
  • 财政年份:
    2015
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conservation laws and ensemble Kalman filter algorithms
守恒定律和集成卡尔曼滤波器算法
  • 批准号:
    261092378
  • 财政年份:
    2014
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了