Theoretical analysis of sound reduction property in one-dimensional random duct and its application to noise control

一维随机风道消声特性理论分析及其在噪声控制中的应用

基本信息

  • 批准号:
    17560403
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

It is known that a wave cannot propagate long distance in random media and is confined in a small region when the field is excited. In physics it is called the "localization", the phenomenon which is closely related to the cut-off (non-propagating) state of waves in a certain broad frequency band. It is expected that this property can be utilized as a muffler to reduce the sound noise because the sound propagating in random media or random loadings would exhibit strong exponential decay along distance. On the other hand, a one-dimensional acoustic duct can be expressed by a transmission line model commonly used in the study of microwave waveguide. In this research, I focus on the sound decaying property of one-dimensional duct (random duct) and demonstrate the validity of the proposed theory through a computer simulation. The results I obtained in 2005 and 2006 are listed below.[2005 year] : As the first step of research, I expressed the sound field in duct by a transmission line model, on which I theoretically analyzed the ordinary one-dimensional duct and carried out computer simulation. Based on the circuit representation, I theoretically proposed the sound reduction property in a case when there exist random media in duct. To confirm the validity of the analysis, I performed the computer simulation and showed the existence of the strong exponential decay. These results have been published in a scientific journal and presented in domestic conference.[2006 year] : Following to the fundamental consideration on the sound reduction problem with randomness in 2005, I theoretically proposed the sound reduction property in a case when there exist random loadings in duct and the extensive simulation makes it clear that the proposed method also enables us to cause the strong exponential decay. These results have been presented in international conferences.
众所周知,波不能在随机介质中长距离传播,并且当场被激发时波被限制在一个小区域内。物理学上称之为“局域化”,这种现象与波在某一宽频带内的截止(非传播)状态密切相关。预计该特性可用作消声器以减少声音噪声,因为在随机介质或随机负载中传播的声音将沿距离表现出强烈的指数衰减。另一方面,一维声波导可以用微波波导研究中常用的传输线模型来表示。在这项研究中,我重点研究一维管道(随机管道)的声音衰减特性,并通过计算机模拟证明了所提出理论的有效性。我在2005年和2006年取得的成果如下: [2005年]:作为研究的第一步,我用传输线模型表达了管道内的声场,在此基础上对普通一维管道进行了理论分析并进行了计算机模拟。基于电路表示,我从理论上提出了管道中存在随机介质的情况下的降噪特性。为了确认分析的有效性,我进行了计算机模拟并证明了强指数衰减的存在。这些成果已发表在科学期刊上,并在国内会议上发表。 [2006年]:继2005年对随机性降噪问题的基本思考之后,我从理论上提出了管道中存在随机载荷的情况下的降噪特性,并且广泛的模拟表明,所提出的方法也使我们能够引起强指数衰减。这些成果已在国际会议上发表。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sound reduction property in one-dimensional duct with random loadings
随机载荷下一维风道的消声特性
On the simulation for one-dimensional duct noise based on transmission-line model.
基于传输线模型的一维管道噪声仿真研究
Sound reduction property in one-dimensional duct with random loading
随机载荷下一维风道的消声特性
On the simulation for one-dimensional duct noise based on transmission-line model
基于传输线模型的一维管道噪声仿真
Aconsideration on sound reduction property in one-dimensional duct
一维风道降噪性能的思考
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKASAKO Noboru其他文献

NAKASAKO Noboru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKASAKO Noboru', 18)}}的其他基金

Acoustic distance measurement method measurable from 0 m and applicable to movement of target or microphone
声学距离测量方法,可从0米开始测量,适用于目标或麦克风的移动
  • 批准号:
    24560533
  • 财政年份:
    2012
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of rear sonar using exhaust sound of automobile
利用汽车排气声的后声纳的研制
  • 批准号:
    21560454
  • 财政年份:
    2009
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of sound source position or direction based on the statistical independecy in an actual sound environment
基于实际声环境中的统计独立性识别声源位置或方向
  • 批准号:
    13650472
  • 财政年份:
    2001
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Scaling limits of growth in random media
扩大随机介质的增长极限
  • 批准号:
    2246576
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Random Media and Large Deviations
随机介质和大偏差
  • 批准号:
    2214676
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
Diffusion in random media: Quantifying the large-scale effects
随机介质中的扩散:量化大规模效应
  • 批准号:
    EP/W018616/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Fellowship
Quantitative research on stochastic processes in random media
随机介质中随机过程的定量研究
  • 批准号:
    21K03286
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
  • 批准号:
    2203007
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Random Media in and Beyond Two Dimensions
二维和二维之外的随机媒体
  • 批准号:
    1954257
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
EAGER: Modes in Random Media and Tissue Characterization
EAGER:随机介质和组织表征中的模式
  • 批准号:
    2022629
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Novel Approaches to Wave Propagation in Random Media
随机介质中波传播的新方法
  • 批准号:
    2010046
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
Research on stochastic processes in random media
随机介质中的随机过程研究
  • 批准号:
    19F19814
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
  • 批准号:
    1907928
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了