From Stability, Riemann-Roch to Non-Abelian Zeta Functions
从稳定性、Riemann-Roch 到非阿贝尔 Zeta 函数
基本信息
- 批准号:14340008
- 负责人:
- 金额:$ 7.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over all, we, guided by our paper of A Program on Geometric Arithmetic, carry on our researches in the past a few years.(1)Develop a new cohomology theory for lattices over number fields, motivated by Tate's thesis.(2)Introduce New yet genuine defnition of rank n non-abelian zeta and L functions.(3)Establish fundamental properties of these functions(4)Show that in case of rank two for number fields, our zeta functions satisfies the Riemann Hypothesis.(5)Expose the relation between Geometric Truncation and Analytic Truncations(6)Introduce non-abelian L functions and establish their basic properties : Based on 4, we introduce general non-abelian L functions using Langlands' fundamental theory of Eisenstein series and hence also establish their basic properties such as meromorphic continuation, functional equations and singularities.(7)Based on (5) and (6),with substantial additional hard work, we are able to relate our non-abelian L functions and what we call Eisenstein periods, a special kind of Arthur's period.(8)Examples :(i)Using an advanced version of Rankin-Selberg and Zagier method due to Jacquet-Lapid-Rogawski, we write down the precise expression for our L functions associated to the so-caleld cusp forms.(ii) As a direct application, using (i),we together with Henry Kim (University of Toronto) obtain a general formula for volumes of Arthur's truncated domains of fundemantal domains associated to split semi-simple groups over number fields. This result when letting the parameter go to infinity then recovers the famous formula of (Siegel and) Langlands on the volumes of fundamental domains associated to (SLn and) general split semi-simple groups over number fields.(9)(i)We find a general formula for the volume of moduli space of semi-stable lattices.(ii)We exposes a fundamental relation between spaciel values of non-abelian zeta functions and special values of classical Dedekind zeta functions.
总的来说,在过去的几年里,我们在《几何算术的一个程序》这篇论文的指导下进行了研究。(1)在Tate论文的启发下,发展了数域上格的一个新的上同调理论。(2)给出了n阶非交换zeta函数和L函数的新的、真正的定义。(3)建立了这些函数的基本性质。(4)证明了在数域秩为2的情况下,我们的zeta函数满足Riemann假设。(5)揭示几何截断与解析截断的关系(6)引入非交换L函数并建立其基本性质:在4的基础上,利用Langlands的Eisenstein级数基本理论,引入了一般非交换L函数,并建立了它们的亚纯延拓、函数方程和奇点等基本性质。(7)在(5)和(6)的基础上,经过大量的额外努力,我们能够将我们的非阿贝尔L函数与我们称之为爱森斯坦周期的周期联系起来,爱森斯坦周期是亚瑟周期的一种特殊类型。(8)例子:(1)利用Jacquet-Lapid-Rogawski的Rankin-Selberg和Zagier方法的改进形式,给出了与尖点形式相关的L函数的精确表达式。(ii)作为一个直接的应用,使用(i),我们与亨利金(多伦多大学)一起获得了一般公式的体积亚瑟的截断域的fundemann域相关联的分裂半单群的数域。这一结果时,让参数去无穷大,然后恢复著名的公式(西格尔和)朗兰兹的体积基本域相关的(SLn和)一般分裂半单群在数域。(9)(i)给出了半稳定格模空间体积的一般公式。(ii)揭示了非交换zeta函数的空间值与经典Dedekind zeta函数的特殊值之间的基本关系。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seshadri constants and a criterion for bigness of pseudo-effective line bundles
Seshadri 常数和伪有效线束大小的判据
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Obata;H.;Y.Nozaki;D.S.Alibo;Y.Yamamoto;S.Takayama
- 通讯作者:S.Takayama
Hypergeometric Solutions to the $q$-Painlev′e Equations
$q$-Painlev′e 方程的超几何解
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Kajiwara;T.Masuda;M.Noumi;Y.Ohta;Y.Yamada
- 通讯作者:Y.Yamada
Proceedings of Conference on L Functions
L 函数会议论文集
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:L WENG;M KANEKO(eds)
- 通讯作者:M KANEKO(eds)
Residues of q-hypergeometric integrals and characters of affine Lie algebras.
q-超几何积分的留数和仿射李代数的特征。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Yas-Hiro Quano;Yas-Hiro Quano;Yas-Hiro Quano;Yas-Hiro Quano;Yas-Hiro Quano;Yas-Hiro Quano;Yas-Hiro Quano;Atsushi Nakayashiki;Atsushi Nakayashiki;Yas-Hiro Quano;Atsushi Nakayashiki;Atsushi Nakayashiki;Yas-Hiro Quano;Atsushi Nakayashiki
- 通讯作者:Atsushi Nakayashiki
Geometric Arithmetic : A Program.
几何算术:一个程序。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Asakura;S.Saito;L.Weng;桂 利行;L.Weng
- 通讯作者:L.Weng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENG Lin其他文献
WENG Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENG Lin', 18)}}的其他基金
Uniformity of Zeta Functions
Zeta 函数的一致性
- 批准号:
15H03612 - 财政年份:2015
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability and Arithmetic Gormetry
稳定性和算术几何学
- 批准号:
23340009 - 财政年份:2011
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability, Global Galois Representations and Non-Abelian Zeta Functions
稳定性、全局伽罗瓦表示和非阿贝尔 Zeta 函数
- 批准号:
18340012 - 财政年份:2006
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 7.3万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 7.3万 - 项目类别:
Empirical research on Japanese truncation mechanism through sound symbolism
通过声音象征对日本截断机制进行实证研究
- 批准号:
21K12995 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms of Brain Dysmorphology in MN1 C-Terminal Truncation Syndrome, a Novel Intellectual Developmental Disability Disorder
MN1 C 端截断综合征(一种新型智力发育障碍)的脑形态异常机制
- 批准号:
10426315 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Mechanisms of Brain Dysmorphology in MN1 C-Terminal Truncation Syndrome, a Novel Intellectual Developmental Disability Disorder
MN1 C 端截断综合征(一种新型智力发育障碍)的脑形态异常机制
- 批准号:
10085034 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Mechanisms of Brain Dysmorphology in MN1 C-Terminal Truncation Syndrome, a Novel Intellectual Developmental Disability Disorder
MN1 C 端截断综合征(一种新型智力发育障碍)的脑形态异常机制
- 批准号:
10661707 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Mechanisms of Brain Dysmorphology in MN1 C-Terminal Truncation Syndrome, a Novel Intellectual Developmental Disability Disorder
MN1 C 端截断综合征(一种新型智力发育障碍)的脑形态异常机制
- 批准号:
10224297 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
A study of phonological mechanism of truncation: An experimental and contrastive approach
截断的语音机制研究:实验和对比方法
- 批准号:
19K23069 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Genetic and epigenetic regulation of cancer-associated glycan truncation in colorectal cancer
结直肠癌中癌症相关聚糖截短的遗传和表观遗传调控
- 批准号:
19K09151 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of the truncation effect of clauses: toward the development and deepening of explanations based on locality constraints
子句截断效应研究:基于局域性约束的解释的发展和深化
- 批准号:
18K00578 - 财政年份:2018
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




