On Saturated distinguished chairs over a local field and generalizations of Dedekind sums
论局部领域的饱和杰出主席和戴德金和的概括
基本信息
- 批准号:14540043
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2003, we spent a lot of time in writing papers up for the results obtained in 2002.(^*) Let K be a local field and L a totally ramified Galois extension of K with [L : K] a power of p, where p is the characteristic of the residual field of K.1. Let L/K satisfy (^*) and have only one proper higher ramification group, or let L/K be of type (m, m,...,m), i. e., if G⊃_≠H1⊃_≠【triple bond】⊃_≠H_<n-1>⊃_≠{1} is a series of all the higher ramification groups of the Galois group G for L/K, then (G : H_1) =【triple bond】=(H_<n-2> : H_<n-1>)=|H_<n-1>|=m. Then we obtained towers of fields【numerical formura】and found that K = ∪^∞_<n=1>K_n has some universal property in 2002. We wrote a paper on them and submitted to a journal.2. Let L/K satisfy (*) and have exactly two proper higher ramification groups G⊃_≠H_1⊃_≠H_2⊃_≠{1} D~ H2 D~ {1} with (G : H_1)=m_1, (H_1 : H_2)=m_2 and |H_2|=m3. There are 13 cases according to sizes of m_1,m_2 and m_3, and in 2002 we obtained data for SDCs of α=π_1+π_1π_2+π_1π_2π over K in all cases, where π_1 and π_2 are prime elements of the corresponding fields to H_1 and H_2, and π is that for L.. In 2003, we wrote (and are still writing) a paper on them.3. Also we began working on the computation of H^1(K, m^^-) when char(K) = 0, where m^^-is the maximal ideal of the ring of integers of Q^^-_p. We know by Coates-Greenberg that H^1(K, m^^-)≠0, since K was shown to have a finite conductor.
在2003年,我们花了很多时间在写论文,为2002年取得的成果。(^*)设K是局部域,L是K的全分歧伽罗瓦扩张,[L:K]是p的幂,其中p是K的剩余域的特征。设L/K满足(^*)且仅有一个真高阶分歧群,或L/K为(m,m,. m)、i.例如,若G_H {<n-1>1}是Galois群G对L/K的所有高阶分支群的级数,则(G:H_1)=[三键]=(H_<n-2>:H_<n-1>)=| H_<n-1>|=m。然后在2002年我们得到了场塔[数值公式],并发现K = K ^∞_<n=1>K_n具有一些普适性质。我们写了一篇关于它们的论文,并提交给一家杂志。设L/K满足(*),且有两个真高阶分歧群G <$H_1 <$H_2 <$H_2 <$H_2 D~ {1},其中(G:H_1)=m_1,(H_1:H_2)=m_2,|氢气|=m3。2002年我们得到了K上α=π 1 +π 1 π 2 +π 1 π 2 π的SDCs的数据,其中π 1和π 2是H1和H2对应域的素元,π是L的素元. 2003年,我们写了(现在还在写)一篇关于它们的论文。我们也开始计算当char(K)= 0时的H^1(K,m^^-),其中m^^-是Q^^-_p的整数环的极大理想。我们通过科茨-格林伯格知道H^1(K,m^^-)= 0,因为K被证明有一个有限导体。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nagasaka, Yumiko et al.: "Generalizations of Dedekind sums and their reciprocity laws"Acta Arithmetica. 106,4. 355-378 (2003)
Nagasaka、Yumiko 等人:“Dedekind 和及其互反律的概括”Acta Arithmetica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ota, Kaori: "Deviatives of Dedekind smno and their reciprocity low"Journal of Number Theory. 98. 280-309 (2003)
Ota Kaori:“Dedekind smno 的偏差及其互易性低”数论杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ota, Kaori: "Derivatives of Dedekind sums and their reciprocity law"J. of Number Theory. 98. 280-309 (2003)
大田香织:“戴德金和的导数及其互反律”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ota, Kaori: "Dedekind sums with characters and class numbers of imaginary quadratic fields"Acta Arithmetica. 108.3. 203-215 (2003)
Ota Kaori:“Dedekind 对虚二次域的字符和类数进行求和”《算术学报》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ota, Kaori: "Derivatives of Dedekind sums and their reciprocity law"J.of Number Theory. 98. 280-309 (2003)
Ota Kaori:“戴德金和的导数及其互反律”J.of Number Theory。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OTA Kaori其他文献
OTA Kaori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Period Domains, Motives, and Ramification Theory in Arithmetic Geometry
算术几何中的周期域、动机和衍生理论
- 批准号:
2001182 - 财政年份:2020
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
Ramification theory of automorphic representations and arithmetic of special L-values
自守表示的分支理论和特殊L值的算术
- 批准号:
15K04784 - 财政年份:2015
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric torsion Galois representations and ramification theory
几何扭转伽罗瓦表示和衍生理论
- 批准号:
21740023 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Towards ramification theory of automorphic representations : Ramified representations and their L-factors
迈向自同构表征的分支理论:分支表征及其 L 因子
- 批准号:
19540032 - 财政年份:2007
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)