Research for low-dimensional manifolds with various geometric structures
各种几何结构的低维流形研究
基本信息
- 批准号:14540076
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ue studied the constraints on the diffeomorphism types of 3, 4-manifolds by certain invariants originated from Seiberg-Witten theory. The contribution of the index of the Dirac operator to the isolated singularities of V 4-manifolds previously studied by him is an integer valued invariant for the pair of a spherical 3-manifold and its spin structure, which gives an integral lift of the Rochlin invariant (determined modulo 16), which coincides with the Neumann-Siebenmann invariant. He considered the case when a certain spherical 3-manifold is obtained by surgery on a knot and gave some constraints on its type in terms of the above invariant and also gave certain relations between the invariants of the spherical 3-manifolds in the case that they are obtained by simultanious surgery on a common knot. He also extended the results to the case of general Seifert 3-manifolds and gave some constraints of them to be obtained by surgery on a knot in terms of the Neumann-Siebenmann invariants. Recently some constraints for the Seifert 3-manifolds to be obtained by surgery on a knot are given by Ozsvath-Szabo's Floer homology. So our next task is to investigate the relations between the Floer homology and the above invariants. Fujii suceeded the study of the local transfromations of 3-dimension hyperbolic cone manifolds in terms of Gaussian hypergeometric functions. Imanishi suceeded the study of the cohomology of the the group of Lipschitz homeomorphisms preserving the differentiable foliations of codimension 1 by utilizing several results about the group of Lipschitz homeomorphisms of the interval.
Ue利用Seiberg-Witten理论中的一些不变量研究了3,4-流形的非同态类型的约束。狄拉克算子的指数对V4-流形孤立奇点的贡献是球面3-流形及其自旋结构对的整数值不变量,它给出了Rochlin不变量的整数提升(确定模16),这与Neumann-Siebenmann不变量一致。他认为的情况下,当一定的球形3流形是通过外科手术的一个结,并给出了一些限制其类型方面的上述不变量,也给出了一定的关系之间的不变量的球形3流形的情况下,他们是通过外科手术的一个共同的结。他还扩大了结果的情况下,一般塞弗特3-流形,并给予了一些限制,他们得到的手术结方面的诺伊曼-西本曼不变量。最近,Ozsvath-Szabo的Floer同调给出了Seifert 3-流形在纽结上通过外科手术得到的一些约束条件。因此,我们的下一个任务是研究Floer同调与上述不变量之间的关系。Fujii成功地研究了三维双曲锥流形的局部变换。Imanishi利用区间上Lipschitz同胚群的几个结果,成功地研究了保余维为1的可微叶理的Lipschitz同胚群的上同调。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Norio Kono: "Nash equilibria of randomly stoped repeated prisonei's dilemma"ICM2002GTA Proceedings. 363-367 (2002)
Norio Kono:《随机停止重复囚犯困境的纳什均衡》ICM2002GTA 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤 信一: "WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的惠特克-新谷函数”Tohoku Math.J.. 55・1 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井道彦: "An expression of harmonic vector fields of hyperbolic 3-cone-manifolds in terms of the hypergeometric functions"Surikaisekiken kyusho Kokyuroku. 1270. 112-125 (2002)
Michihiko Fujii:“用超几何函数表示双曲 3 锥体流形的调和矢量场” Surikaisekiken kyusho Kokyuroku 1270. 112-125 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤信一: "Whittaker-Shintani functions for orthogonal groups"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的 Whittaker-Shintani 函数”Tohoku Math.J.. 55・1 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井道彦: "An algorithm for solving linear ordinary differential equations of Fuchsian type with three singular points"Interdisciplinary Information Science. 9巻・1号(未定). (2003)
Michihiko Fujii:“求解具有三个奇异点的 Fuchsian 型线性常微分方程的算法”跨学科信息科学,第 9 卷,第 1 期(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UE Masaaki其他文献
UE Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UE Masaaki', 18)}}的其他基金
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
- 批准号:
20540072 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of Low-dimensicnal manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
18540081 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of low-dimensional manifolds with various geometric structures
各种几何结构的低维流形的研究
- 批准号:
16540063 - 财政年份:2004
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for low-climensional manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
12640068 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
Does a compact hyperbolic 4-manifold have a symplectic structure?
紧双曲4流形是否具有辛结构?
- 批准号:
17K14186 - 财政年份:2017
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Handle decompositions and smooth structures on 4-manifold
处理 4 流形上的分解和平滑结构
- 批准号:
23840027 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
4-Manifold topology and related topics
4-流形拓扑及相关主题
- 批准号:
1005304 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Quantum Field Theories and Related Invariants in 3- and 4-Manifold Topology
数学科学:拓扑量子场论和 3 流形和 4 流形拓扑中的相关不变量
- 批准号:
9504423 - 财政年份:1995
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
9107368 - 财政年份:1991
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
8902153 - 财政年份:1989
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant














{{item.name}}会员




