Research for low-dimensional manifolds with various geometric structures
各种几何结构的低维流形研究
基本信息
- 批准号:14540076
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ue studied the constraints on the diffeomorphism types of 3, 4-manifolds by certain invariants originated from Seiberg-Witten theory. The contribution of the index of the Dirac operator to the isolated singularities of V 4-manifolds previously studied by him is an integer valued invariant for the pair of a spherical 3-manifold and its spin structure, which gives an integral lift of the Rochlin invariant (determined modulo 16), which coincides with the Neumann-Siebenmann invariant. He considered the case when a certain spherical 3-manifold is obtained by surgery on a knot and gave some constraints on its type in terms of the above invariant and also gave certain relations between the invariants of the spherical 3-manifolds in the case that they are obtained by simultanious surgery on a common knot. He also extended the results to the case of general Seifert 3-manifolds and gave some constraints of them to be obtained by surgery on a knot in terms of the Neumann-Siebenmann invariants. Recently some constraints for the Seifert 3-manifolds to be obtained by surgery on a knot are given by Ozsvath-Szabo's Floer homology. So our next task is to investigate the relations between the Floer homology and the above invariants. Fujii suceeded the study of the local transfromations of 3-dimension hyperbolic cone manifolds in terms of Gaussian hypergeometric functions. Imanishi suceeded the study of the cohomology of the the group of Lipschitz homeomorphisms preserving the differentiable foliations of codimension 1 by utilizing several results about the group of Lipschitz homeomorphisms of the interval.
UE研究了某些源自塞伯格(Seiberg-Witten)理论的某些不变式的3,4个manifolds的差异类型的约束。 DIRAC操作员对他先前研究的V 4-Manifolds孤立的奇异性的索引的贡献是一对球形3型Manifold及其旋转结构的整数不变性,它与Rochlin Invariant(确定的Modulo 16)的整体升降(与Neumann-Siebenman-Siebenmann Mannmannewiantiant vishiant visheriant seventiant and旋转结构相吻合。他认为,当一个结上的手术获得一定的球形3个序列时,就上述不变性而对其类型产生了一些限制,并且在球形3个manifolds的不变剂之间也给出了某些关系,因为它们是在普通结上同时通过同时的手术获得的。他还将结果扩展到了塞弗特(Seifert)一般的3个manifolds的情况下,并给出了一些限制因素,可以通过诺伊曼·塞本曼(Neumann-Siebenmann)不变式来通过手术来获得。最近,Ozsvath-Szabo的Floer同源性给出了通过手术获得的Seifert 3 manifolds的一些限制。因此,我们的下一个任务是研究浮子同源性与上述不变性之间的关系。 Fujii在高斯高几幅功能方面进行了研究3维双曲线歧管的局部转移的研究。 Imanishi对Lipschitz同构同构的共同体学进行了研究,该研究通过利用有关该间隔的Lipschitz同构同构的几个结果,从而保留了Codimension 1的可区分叶子。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
加藤 信一: "WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的惠特克-新谷函数”Tohoku Math.J.. 55・1 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Norio Kono: "Nash equilibria of randomly stoped repeated prisonei's dilemma"ICM2002GTA Proceedings. 363-367 (2002)
Norio Kono:《随机停止重复囚犯困境的纳什均衡》ICM2002GTA 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
河野 敬雄: "Nash equilibria of randomly stopped repeated prisoner's dilemma"ICM 2002 GTA Proceedings. 363-367 (2002)
Takao Kono:“随机停止重复囚徒困境的纳什均衡”ICM 2002 GTA Proceedings 363-367 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshinori Morimoto: "Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely dogenerate elliptic operators"Asterisque. Vol.284. 245-264 (2003)
Yoshinori Morimoto:“无限生成椭圆算子的对数 Sobolev 不等式和半线性 Dirichlet 问题”星号。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井道彦: "An algorithm for solving linear ordinary differential equations of Fuchsian type with three singular points"Interdisciplinary Information Science. 9巻・1号(未定). (2003)
Michihiko Fujii:“求解具有三个奇异点的 Fuchsian 型线性常微分方程的算法”跨学科信息科学,第 9 卷,第 1 期(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UE Masaaki其他文献
UE Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UE Masaaki', 18)}}的其他基金
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
- 批准号:
20540072 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of Low-dimensicnal manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
18540081 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of low-dimensional manifolds with various geometric structures
各种几何结构的低维流形的研究
- 批准号:
16540063 - 财政年份:2004
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for low-climensional manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
12640068 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
On the geometry of CMC hyper surfaces embedded in a manifold of dimension 4 or 5
嵌入 4 维或 5 维流形的 CMC 超曲面几何
- 批准号:
2289230 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Studentship
Does a compact hyperbolic 4-manifold have a symplectic structure?
紧双曲4流形是否具有辛结构?
- 批准号:
17K14186 - 财政年份:2017
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Surgery on 4-manifolds by exceptional Dehn surgery on 3-manifold
通过特殊的 Dehn 3 歧管手术进行 4 歧管手术
- 批准号:
16K05143 - 财政年份:2016
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of 4 dimensional manifolds using mapping class groups and its applications
利用映射类群构建4维流形及其应用
- 批准号:
25800043 - 财政年份:2013
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)