Research for low-dimensional manifolds with various geometric structures
各种几何结构的低维流形研究
基本信息
- 批准号:14540076
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ue studied the constraints on the diffeomorphism types of 3, 4-manifolds by certain invariants originated from Seiberg-Witten theory. The contribution of the index of the Dirac operator to the isolated singularities of V 4-manifolds previously studied by him is an integer valued invariant for the pair of a spherical 3-manifold and its spin structure, which gives an integral lift of the Rochlin invariant (determined modulo 16), which coincides with the Neumann-Siebenmann invariant. He considered the case when a certain spherical 3-manifold is obtained by surgery on a knot and gave some constraints on its type in terms of the above invariant and also gave certain relations between the invariants of the spherical 3-manifolds in the case that they are obtained by simultanious surgery on a common knot. He also extended the results to the case of general Seifert 3-manifolds and gave some constraints of them to be obtained by surgery on a knot in terms of the Neumann-Siebenmann invariants. Recently some constraints for the Seifert 3-manifolds to be obtained by surgery on a knot are given by Ozsvath-Szabo's Floer homology. So our next task is to investigate the relations between the Floer homology and the above invariants. Fujii suceeded the study of the local transfromations of 3-dimension hyperbolic cone manifolds in terms of Gaussian hypergeometric functions. Imanishi suceeded the study of the cohomology of the the group of Lipschitz homeomorphisms preserving the differentiable foliations of codimension 1 by utilizing several results about the group of Lipschitz homeomorphisms of the interval.
研究了源于Seiberg-Witten理论的某些不变量对3,4-流形的微分同胚型的约束。Dirac算子的指数对V4-流形孤立奇点的贡献是球面3-流形及其自旋结构对的整数值不变量,它给出了Rochlin不变量的积分升力(模16),这与Neumann-Siebenmann不变量重合.他考虑了球面上的三维流形是由一个纽结上的外科手术得到的,并用上述不变量给出了球面上三维流形的类型的一些限制条件,并给出了当球面上的三维流形的不变量是由普通纽结上的同时外科手术得到的情况下它们之间的某种关系。他还将结果推广到一般Seifert 3-流形的情形,并利用Neumann-Siebenmann不变量给出了在纽结上进行手术所得到的一些约束条件。最近,Ozsvath-Szabo的Floer同调给出了Seifert三维流形的一些约束条件。因此,我们的下一个任务是研究Floer同调与上述不变量之间的关系。Fujii成功地研究了三维双曲锥流形的高斯超几何函数局部变换。Imanishi利用关于区间的Lipschitz同胚群的几个结果,成功地研究了保持余维1的可微叶的Lipschitz同胚群的上同调.
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Norio Kono: "Nash equilibria of randomly stoped repeated prisonei's dilemma"ICM2002GTA Proceedings. 363-367 (2002)
Norio Kono:《随机停止重复囚犯困境的纳什均衡》ICM2002GTA 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤 信一: "WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的惠特克-新谷函数”Tohoku Math.J.. 55・1 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井道彦: "An expression of harmonic vector fields of hyperbolic 3-cone-manifolds in terms of the hypergeometric functions"Surikaisekiken kyusho Kokyuroku. 1270. 112-125 (2002)
Michihiko Fujii:“用超几何函数表示双曲 3 锥体流形的调和矢量场” Surikaisekiken kyusho Kokyuroku 1270. 112-125 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤信一: "Whittaker-Shintani functions for orthogonal groups"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的 Whittaker-Shintani 函数”Tohoku Math.J.. 55・1 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井道彦: "An algorithm for solving linear ordinary differential equations of Fuchsian type with three singular points"Interdisciplinary Information Science. 9巻・1号(未定). (2003)
Michihiko Fujii:“求解具有三个奇异点的 Fuchsian 型线性常微分方程的算法”跨学科信息科学,第 9 卷,第 1 期(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UE Masaaki其他文献
UE Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UE Masaaki', 18)}}的其他基金
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
- 批准号:
20540072 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of Low-dimensicnal manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
18540081 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of low-dimensional manifolds with various geometric structures
各种几何结构的低维流形的研究
- 批准号:
16540063 - 财政年份:2004
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for low-climensional manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
12640068 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
Does a compact hyperbolic 4-manifold have a symplectic structure?
紧双曲4流形是否具有辛结构?
- 批准号:
17K14186 - 财政年份:2017
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Handle decompositions and smooth structures on 4-manifold
处理 4 流形上的分解和平滑结构
- 批准号:
23840027 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
4-Manifold topology and related topics
4-流形拓扑及相关主题
- 批准号:
1005304 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Quantum Field Theories and Related Invariants in 3- and 4-Manifold Topology
数学科学:拓扑量子场论和 3 流形和 4 流形拓扑中的相关不变量
- 批准号:
9504423 - 财政年份:1995
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
9107368 - 财政年份:1991
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
8902153 - 财政年份:1989
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant














{{item.name}}会员




