The study of Low-dimensicnal manifolds with various geometric structures
各种几何结构低维流形的研究
基本信息
- 批准号:18540081
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator Ue continued the research of 3 and 4-manifolds. In particular he considered Fukumoto-Furuta invariant for rational homology 3-spheres coming from Seiberg-Witten theory (which coincides with the Neumann-Siebenmann invariant in case of plumbed 3-manifolds) and Ozsvath-Szabo's d-invariant defined by Heegaard Floer homology. He showed that these two invariants coincide for spherical 3-manifolds, and also for certain plumbed 3-manifolds. This implies that under such conditions both invariants are the integral 〓 of the classicalRochlin invariant and also homology cobordism invariants. But they are not the sane in general, and it is sill open whether there exists an invariant satisfying the above two conditions. He also gave certain constraits for the signature of 4-manifolds bounding Seifert rational homology 3-spheres in terms of the above invariants.The investigator Tsuyoshi Kato estimated the growth of the Casson handles embedded in the K3 surface by Yang-Milis Gauge theory, and also analized the entropy of iterations by families of maps. Fujii found the confluence phenomena of singular points of ordinary differential equations induced by deformations of hyperbolic 2-cone-manifolds, and descried harmonic vector fields on hyperbola 3-cone-manifolds in terms of hypergeometric functions. Shin'ichi Kato established the relative = symmetric space version of Jaquet's theorem, which claims that every irreducible admissible representation of p-adic reductive groups is embedded to an induced representation for irreducible cusp representation of a parabolic subgroup. Ushiki considered transgression operators over the space of distributions induced by complex dynamical systems over the Riemann sphere and showed that the Fredholm determinant is represented by Artin-Mazurzeta function.
首席研究员 Ue 继续进行 3 流形和 4 流形的研究。特别是,他认为来自 Seiberg-Witten 理论的有理同调 3 球体的 Fukumoto-Furuta 不变量(与管道 3 流形情况下的 Neumann-Siebenmann 不变量一致)和由 Heegaard Floer 同调定义的 Ozsvath-Szabo 的 d 不变量。他证明这两个不变量对于球形 3 流形以及某些管道 3 流形来说是一致的。这意味着在这种情况下,两个不变量都是经典 Rochlin 不变量的积分〓,也是同源协边不变量。但它们并不是一般意义上的理智的,是否存在满足上述两个条件的不变量仍然是开放的。他还根据上述不变量给出了限制 Seifert 有理同调 3-球体的 4-流形签名的某些约束。研究者 Tsuyoshi Kato 通过 Yang-Milis 规范理论估计了嵌入 K3 表面的 Casson 柄的增长,并通过映射族分析了迭代的熵。藤井发现了双曲2锥流形变形引起的常微分方程奇异点汇合现象,并用超几何函数描述了双曲3锥流形上的调和矢量场。 Shin'ichi Kato 建立了 Jaquet 定理的相对 = 对称空间版本,该定理声称 p 进还原群的每个不可约的可接受表示都嵌入到抛物线子群的不可约尖点表示的诱导表示中。 Ushiki 考虑了黎曼球面上复杂动力系统引起的分布空间上的海侵算子,并表明 Fredholm 行列式由 Artin-Mazurzeta 函数表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Confluence of singular points of ordinary differential equations of Fuchsian type induced by deformation of 2-dimensional hyperbolic cone-manif old structures
二维双曲锥体旧结构变形引起的Fuchsian型常微分方程奇异点汇合
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Michihiko;Fujii;Shigehiro Ushiki;Michihiko Fujii
- 通讯作者:Michihiko Fujii
The Fukumoto-Furuta and the Ozsvath-Szabo invariants for spherical 3-manifolds
球形 3 流形的 Fukumoto-Furuta 和 Ozsvath-Szabo 不变量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Michihiko;Fujii;Shigehiro Ushiki;Michihiko Fujii;Shigehiro Ushiki;上 正明
- 通讯作者:上 正明
An expression of harmonic vertor fields on hyperbolic 3-cone-manifolds in terms of hypergeometric functions
双曲三锥流形上的调和垂直场用超几何函数表示
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Michihiko;Fujii
- 通讯作者:Fujii
Second Julia sets of complex dynamical systems in C^2-computer visualization-
C^2 中的第二组 Julia 复杂动力系统-计算机可视化-
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.Ushiki;S.Ushiki;Nasashi Kisaka;Shigehiro Ushiki;S.Ushiki
- 通讯作者:S.Ushiki
An expresson of harmonic vertor fields on hyperbolic 3-cone-manifolds In terms of hypergeometric functions
双曲三锥流形上的调和垂直场的超几何函数表达式
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:藤井 道彦
- 通讯作者:藤井 道彦
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UE Masaaki其他文献
UE Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UE Masaaki', 18)}}的其他基金
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
- 批准号:
20540072 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of low-dimensional manifolds with various geometric structures
各种几何结构的低维流形的研究
- 批准号:
16540063 - 财政年份:2004
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for low-dimensional manifolds with various geometric structures
各种几何结构的低维流形研究
- 批准号:
14540076 - 财政年份:2002
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for low-climensional manifolds with various geometric structures
各种几何结构低维流形的研究
- 批准号:
12640068 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Does a compact hyperbolic 4-manifold have a symplectic structure?
紧双曲4流形是否具有辛结构?
- 批准号:
17K14186 - 财政年份:2017
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Handle decompositions and smooth structures on 4-manifold
处理 4 流形上的分解和平滑结构
- 批准号:
23840027 - 财政年份:2011
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
4-Manifold topology and related topics
4-流形拓扑及相关主题
- 批准号:
1005304 - 财政年份:2010
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Quantum Field Theories and Related Invariants in 3- and 4-Manifold Topology
数学科学:拓扑量子场论和 3 流形和 4 流形拓扑中的相关不变量
- 批准号:
9504423 - 财政年份:1995
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
9107368 - 财政年份:1991
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
8902153 - 财政年份:1989
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant














{{item.name}}会员




