Study of Numerical Methods for Wave Propagation Phenomena in Unbounded Region and its Applications
无界区域波传播现象的数值方法研究及其应用
基本信息
- 批准号:14540106
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to develop the approximation methods for wave propagation problems in unbounded region and as its applications we study the numerical simulation of voice generation. We formulate the problem as the exterior Helmholtz equation, and reduce the problem to the one in a bounded region by introducing the artificial boundary condition on an artificial boundary. We developed the numerical methods for this problem based on the finite element discretization method and study the application problems including the voice generation.The results of the head investigator Kako are the followings. He found out the variational formula of the complex eigenvalues with respect to the deformation of vocal tract. The eigenvalues are related to the formants of frequency response function that is important for voice generation. He then developed the algorithm for designing the shape of vocal tract by use of the variational formula, and validated the algorithm through nume … More rical simulations. He also studied the application of the Finite Difference Time Domain method to the acoustic problem and obtained several basic results.For the voice problem, Yoshida developed the method to obtain the mapping from the articulation parameters to the phonetic transmission characteristics by use of the neural networks. Suito studied the shape optimization problem for minimizing the reflection of the wave propagating in a tubular region with spatially changing impedance parameters and obtained unusual numerical results.Related to the numerical methods for the wave problem, Koyama studied the three dimensional Helmholtz problem by use of the fictitious domain method and derived the a priori error estimates for the approximation, and investigated the validity by some numerical experiences. Ushijima studied the Helmholtz problem by the collocation method based on the fundamental solutions and obtained a sufficient condition for the exponential convergence of the approximate solution and tried to validate of the theoretical results by multi-precision arithmetic computation.As for the numerical methods for solving large linear equations appearing in the application problems including the Helmholtz equation, Zhang studied the fast and efficient iteration methods. Imamura developed the automatic tuning techniques with high actuary and stability in the implementation for the parallel computation methods for the large linear systems. Less
本研究计画的目的是发展无界区域波传播问题的近似方法,并作为其应用,我们研究语音产生的数值模拟。我们将问题表示为外Helmholtz方程,并通过在人工边界上引入人工边界条件,将问题化为有界区域内的问题。我们开发了基于有限元离散化方法的该问题的数值方法,并研究了包括语音生成在内的应用问题。首席研究员Kako的结果如下。他找到了复特征值随声道变形的变分公式。特征值与频率响应函数的共振峰有关,这对语音生成很重要。然后利用变分公式提出了声道形状设计的算法,并通过数值实验验证了算法的有效性 ...更多信息 rical模拟他还研究了时域有限差分法在声学问题中的应用,并获得了几个基本结果。对于语音问题,吉田开发了使用神经网络获得从清晰度参数到语音传输特性的映射的方法。Suito研究了在阻抗参数随空间变化的管状区域中传播的波的反射最小化的形状优化问题,并得到了不寻常的数值结果。与波问题的数值方法有关,Koyama利用虚拟区域方法研究了三维Helmholtz问题,并导出了近似的先验误差估计,并通过数值实验验证了该方法的有效性。牛岛用基于基本解的配置法研究了亥姆霍兹问题,得到了近似解指数收敛的充分条件,并试图通过多精度算术计算来验证理论结果。对于求解亥姆霍兹方程等应用问题中出现的大型线性方程组的数值方法,张研究了快速有效的迭代方法。Imamura在大型线性系统并行计算方法的实现中发展了具有高精度和高稳定性的自动调整技术。少
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chiba, F., Kako, T.: "Newmark's method and discrete energy applied to resistive MHD equation"Vietnam Journal of Mathematics. (掲載予定). (2003)
Chiba, F., Kako, T.:“纽马克方法和离散能量应用于电阻 MHD 方程”越南数学杂志(2003 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nasir, H.M., Kako, T., Koyama, D.: "A mixed type finite element approximation for radiation problems using fictitious domain method"Journal of Computational and Applied Mathematics. 152. 377-392 (2003)
Nasir, H.M.、Kako, T.、Koyama, D.:“使用虚拟域方法的辐射问题的混合型有限元近似”计算与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ushijima, T.: "Equi-distant collocation method for periodic functions with kernel expression"Proceedings of Fifth China-Japan Joint Seminar on Numerical Mathematics. 220-226 (2002)
牛岛T.:“带核表达式的周期函数的等距配置方法”第五届中日数值数学联合研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAKO Takashi其他文献
KAKO Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAKO Takashi', 18)}}的其他基金
Study on numerical methods of wave propagation phenomena and its applications to information and energy transmission problems
波传播现象的数值方法及其在信息和能量传输问题中的应用研究
- 批准号:
21540116 - 财政年份:2009
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical methods for wave propagation phenomena in unbounded region and its applications to shape design problems
无界区域波传播现象的数值方法及其在形状设计问题中的应用
- 批准号:
18540114 - 财政年份:2006
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on non-standard finite element approximation methods for partial differential equations
偏微分方程非标准有限元逼近方法研究
- 批准号:
11440027 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
- 批准号:
573136-2022 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
- 批准号:
2795756 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
- 批准号:
22K04278 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
- 批准号:
20K10160 - 财政年份:2020
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 2.56万 - 项目类别:
Research Fellowships














{{item.name}}会员




